File size: 14,320 Bytes
411792d |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd9b9b81cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd9b9b81d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9b9b81e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd9b9b81ea0>", "_build": "<function ActorCriticPolicy._build at 0x7fd9b9b81f30>", "forward": "<function ActorCriticPolicy.forward at 0x7fd9b9b81fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd9b9b82050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd9b9b820e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd9b9b82170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd9b9b82200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd9b9b82290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd9b9b82320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd9b9b85300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686125236640318028, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABO52D///us/JiDQv7p7+D6ILp49HTQjP7Pl1L16O9m+rDJnP5MYrL9e4Fc/pGYGP8Gecz8kgTzA2sjEvelvV0C5frm/gvr8v2UOZL/iGKA/Knctvx+FiD8q8r4/esjpv+ZdJT/wEQ3A8QYFPzKaCD9P7Wc/H/yNvpEEDz/uJrw/3oNwv7Kimj/aYTk+0+u2v0WG2T2FJYXAiPRrvvTTNj/Wk8a/oFAXv9TAzb1Q84C9eoQRv15v/r+vVR8/7Z7yPz3Esb7UFH7AVwCYP08wbbxIJ8a/HkjoPvEGBT8ymgg/QwomP3MMDj9pHK8+dj/zP/723L/SHR0/Bg8WPxp6WL+iWIQ/kPuIv65dNz/OcB7A1hWpv8QP4D6gzQW/SetrPynlY78rAzu/49g5P8gLmjwFSr0/z+P1vvroBT8wZF8/SCfGvx5I6D7xBgU/MpoIPwaWoz9bnUg/JQw5PoMkUr/yjYS/vOavv4hVyj+VIt89tCYGPz/2Ir64dSpAOQaDviGDqD/CUgPA55Tiv11VuT9pbAXALvvVv6iobL4tHrg/kifaPj9CnbwgsFS/IliXv+ZdJT8eSOg+8QYFPzKaCD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABzOE01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKVPXPAAAAACYi+W/AAAAAIpe970AAAAATDgAQAAAAACXrJA9AAAAANC+AEAAAAAAvyrivQAAAACvPvm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA05HAtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM9PYz0AAAAAhJPovwAAAADihtM6AAAAALe0+z8AAAAARun1vQAAAADPDQBAAAAAAMr/hj0AAAAA1lPevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoszrQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAOLwU+AAAAABFXAMAAAAAAqFO3vQAAAABmk+4/AAAAACe7Az4AAAAAad78PwAAAADDLZm9AAAAAJoIAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOCjK3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvOnoPQAAAAAdS/6/AAAAAGgWCL4AAAAAC7X+PwAAAAAJYQO+AAAAANLj5D8AAAAAl8+tPQAAAADgD9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAJF5MURFuMAWyUTegDjAF0lEdAqjDBPEbYLHV9lChoBkdAfJsZwGW2PWgHTegDaAhHQKow/MxoIv91fZQoaAZHQJLzq2Xsw+NoB03oA2gIR0CqMokdeY2LdX2UKGgGR0CQvP3IdU83aAdN6ANoCEdAqjfLwrlNlHV9lChoBkdAiHamcFyJbmgHTegDaAhHQKo9YK+BYmt1fZQoaAZHQJJMzQw9JSRoB03oA2gIR0CqPbdqL0jDdX2UKGgGR0CSvS5sj3VTaAdN6ANoCEdAqj/tlTWGy3V9lChoBkdAkFSltGd7OWgHTegDaAhHQKpHr4B3iaR1fZQoaAZHQI70V7hNucdoB03oA2gIR0CqTMscQyyldX2UKGgGR0CQrOYrJ8v3aAdN6ANoCEdAqk0NjVhCt3V9lChoBkdAkciONPxhD2gHTegDaAhHQKpOoMuvllt1fZQoaAZHQI+NmmWMS9NoB03oA2gIR0CqVCWluWKNdX2UKGgGR0CSz0IuGsV+aAdN6ANoCEdAqllEehf0E3V9lChoBkdAkZY5PZZjhGgHTegDaAhHQKpZgV0Lc9J1fZQoaAZHQJFb7ikwevJoB03oA2gIR0CqWx1+RYA9dX2UKGgGR0CRSf+dK/VRaAdN6ANoCEdAqmMTMA3kxXV9lChoBkdAjCdxYigTRWgHTegDaAhHQKppUl4TsY51fZQoaAZHQIwKpof0VahoB03oA2gIR0CqaZGs/6frdX2UKGgGR0CRV1r4nF5waAdN6ANoCEdAqmspqIrOJXV9lChoBkdAkiqu5z5oG2gHTegDaAhHQKpwpN2TxG51fZQoaAZHQJLPJ8PWhAZoB03oA2gIR0CqddE+otL+dX2UKGgGR0CS+MmaH9FXaAdN6ANoCEdAqnYRLM9r43V9lChoBkdAkpJrgjyFwmgHTegDaAhHQKp3om+j/Mp1fZQoaAZHQJMMZRWLgoBoB03oA2gIR0Cqfj8/dIoWdX2UKGgGR0CSTE8hLXcyaAdN6ANoCEdAqoWbU9ZA6nV9lChoBkdAipX3iBGx2WgHTegDaAhHQKqF1uEVWS51fZQoaAZHQJDRSqebutxoB03oA2gIR0Cqh2zXSSeRdX2UKGgGR0COYnr8BMi9aAdN6ANoCEdAqoyxMpPRA3V9lChoBkdAiL2e/xlQM2gHTegDaAhHQKqR5KEnLJV1fZQoaAZHQIu53n4fwJBoB03oA2gIR0CqkiCkwevIdX2UKGgGR0CK+phOxjaxaAdN6ANoCEdAqpO0k2P1c3V9lChoBkdAjUEnKnvUjWgHTegDaAhHQKqZM9aEBbR1fZQoaAZHQIthP+ERJ3BoB03oA2gIR0CqoNG9YfW+dX2UKGgGR0CSens1sLv1aAdN6ANoCEdAqqE1BIFvAHV9lChoBkdAjYsnE/B3zWgHTegDaAhHQKqjo5hBqsV1fZQoaAZHQJAf7Heaa1FoB03oA2gIR0CqqOI42jwhdX2UKGgGR0CSQMu/DcdpaAdN6ANoCEdAqq4JlJ6IFnV9lChoBkdAh5oQhW5pamgHTegDaAhHQKquQyFfzBh1fZQoaAZHQJCFZm+TNdJoB03oA2gIR0Cqr9R+az/qdX2UKGgGR0CSp9W/JvHcaAdN6ANoCEdAqrUwCSzPbHV9lChoBkdAj6E8+RoysWgHTegDaAhHQKq7cf+S8rZ1fZQoaAZHQJApxet0V8FoB03oA2gIR0Cqu8+ocaOxdX2UKGgGR0CBiU3eenQ6aAdN6ANoCEdAqr5GCiAUcnV9lChoBkdAjfIIXj2i+WgHTegDaAhHQKrFEKzAvct1fZQoaAZHQI7rczuWrwRoB03oA2gIR0CqyjKYzBRAdX2UKGgGR0CMpOkWykbhaAdN6ANoCEdAqsp0x7AtWnV9lChoBkdAjLRhSDRMOGgHTegDaAhHQKrMFW6K+BZ1fZQoaAZHQIxtVvXK8thoB03oA2gIR0Cq0VUNKAavdX2UKGgGR0CSEGmhM8HOaAdN6ANoCEdAqtZqYVqN63V9lChoBkdAiihcX3xnWmgHTegDaAhHQKrWuxdIGyJ1fZQoaAZHQI50Npyp71JoB03oA2gIR0Cq2Qm+sYEXdX2UKGgGR0CSDgU2kzoEaAdN6ANoCEdAquEmSfUWmHV9lChoBkdAkVSZnL7oCGgHTegDaAhHQKrmjXUYsNF1fZQoaAZHQJFzXlijL0VoB03oA2gIR0Cq5tElu3tsdX2UKGgGR0CLz73zMA3laAdN6ANoCEdAquhngaWHDnV9lChoBkdAi1s4FaB7NWgHTegDaAhHQKrtvyU9pyp1fZQoaAZHQJGxbi83+/BoB03oA2gIR0Cq8tLf+CK8dX2UKGgGR0CSpIHE/B3zaAdN6ANoCEdAqvMS3qiXY3V9lChoBkdAkSO+ruIAO2gHTegDaAhHQKr0oc/dIoV1fZQoaAZHQI7gQNZvDP5oB03oA2gIR0Cq/BSvcJt0dX2UKGgGR0COHwliz9jxaAdN6ANoCEdAqwKjz06HTXV9lChoBkdAj5QfVy3kP2gHTegDaAhHQKsC31yNn5B1fZQoaAZHQIu1D/IbOu9oB03oA2gIR0CrBGNxEORUdX2UKGgGR0CQUmqn3ta7aAdN6ANoCEdAqwnBD7ZWaXV9lChoBkdAj+g8IiTt9mgHTegDaAhHQKsO1aZhKDl1fZQoaAZHQIx9C4Ds+mpoB03oA2gIR0CrDxH2qT8pdX2UKGgGR0CQRgMNc4YKaAdN6ANoCEdAqxCo9eQdS3V9lChoBkdAidTXH7xd6mgHTegDaAhHQKsW3wMH8j11fZQoaAZHQI1nzOX3QD5oB03oA2gIR0CrHr10Lc9GdX2UKGgGR0CMv4ZMtbs4aAdN6ANoCEdAqx8WLk0aZXV9lChoBkdAhsW3WOIZZWgHTegDaAhHQKsgnAaef7J1fZQoaAZHQI9vhsuWa+hoB03oA2gIR0CrJc8OTaCddX2UKGgGR0CQjHSE12q2aAdN6ANoCEdAqyrp3os7MnV9lChoBkdAkGMW07bL2mgHTegDaAhHQKsrKXu3MIN1fZQoaAZHQJHjyajN6gNoB03oA2gIR0CrLK5nUUfxdX2UKGgGR0CTP4sLfDUFaAdN6ANoCEdAqzHUjTrmhnV9lChoBkdAk0PQu27Wd2gHTegDaAhHQKs4mDrZ8KJ1fZQoaAZHQJE3qaMJhORoB03oA2gIR0CrOPa19fCzdX2UKGgGR0CS8rz3yqdZaAdN6ANoCEdAqztWWBz3iHV9lChoBkdAk7IzMFEApGgHTegDaAhHQKtBaNCqp991fZQoaAZHQJJFzLLZBcBoB03oA2gIR0CrRo+Zof0VdX2UKGgGR0CQJ7VGTcIraAdN6ANoCEdAq0bL/4qPO3V9lChoBkdAi5Nz7/GVA2gHTegDaAhHQKtIWqur6tV1fZQoaAZHQHfjIdMj/uNoB03oA2gIR0CrTbefywwCdX2UKGgGR0CRjC16mfoSaAdN6ANoCEdAq1NpaaCtinV9lChoBkdAkRtEFnqVyGgHTegDaAhHQKtTw9EkSmJ1fZQoaAZHQJLJLaFmFrVoB03oA2gIR0CrViCm2sq8dX2UKGgGR0CSDXjoZAIIaAdN6ANoCEdAq13274BV/HV9lChoBkdAkekCILw4KmgHTegDaAhHQKtjGQI2OyV1fZQoaAZHQJJu0Dq4YrJoB03oA2gIR0CrY1W+XZ5BdX2UKGgGR0CRXnCwr1/UaAdN6ANoCEdAq2TsPpY9xXV9lChoBkdAkQs9pZfUnWgHTegDaAhHQKtqNs67ulZ1fZQoaAZHQJEE5/ustCloB03oA2gIR0Crb0j0UXYUdX2UKGgGR0CS1Ab4agmJaAdN6ANoCEdAq2+EFhXr+3V9lChoBkdAk+W7Hhjvu2gHTegDaAhHQKtxOMH8jzJ1fZQoaAZHQJOfoBFNL15oB03oA2gIR0CreP6vzOHGdX2UKGgGR0CTwsFBppN9aAdN6ANoCEdAq38Dbah6B3V9lChoBkdAk9sQqAjIJmgHTegDaAhHQKt/RcgyM1l1fZQoaAZHQJPW6sbNr0toB03oA2gIR0CrgOTIeYD1dX2UKGgGR0CRoFvlU6xPaAdN6ANoCEdAq4YacLBsRHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |