File size: 5,520 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$SIMD_TILE = BATCH_TILE // 8
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/common.h>
#include <xnnpack/vunary.h>
void xnn_f16_velu_ukernel__neonfp16arith_rr1_p3_x${BATCH_TILE}(
size_t batch,
const void* input,
void* output,
const union xnn_f16_elu_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(batch != 0);
assert(batch % sizeof(uint16_t) == 0);
assert(input != NULL);
assert(output != NULL);
const float16x8_t vprescale = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith_rr1_p3.prescale));
const float16x8_t vsat_cutoff = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith_rr1_p3.sat_cutoff));
const float16x8_t vmagic_bias = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith_rr1_p3.magic_bias));
const float16x8_t vlog2e = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith_rr1_p3.log2e));
const float16x8_t vminus_ln2 = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith_rr1_p3.minus_ln2));
const float16x8_t vc3 = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith_rr1_p3.c3));
const float16x8_t vc2 = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith_rr1_p3.c2));
const float16x8_t vminus_alpha = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith_rr1_p3.minus_alpha));
const float16x8_t vbeta = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith_rr1_p3.beta));
const uint16_t* i = (const uint16_t*) input;
uint16_t* o = (uint16_t*) output;
$if BATCH_TILE > 8:
for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) {
$for N in range(SIMD_TILE):
float16x8_t vx${N} = vreinterpretq_f16_u16(vld1q_u16(i)); i += 8;
$for N in range(SIMD_TILE):
float16x8_t vz${N} = vmulq_f16(vx${N}, vprescale);
$for N in range(SIMD_TILE):
vz${N} = vmaxq_f16(vz${N}, vsat_cutoff);
$for N in range(SIMD_TILE):
float16x8_t vn${N} = vfmaq_f16(vmagic_bias, vz${N}, vlog2e);
$for N in range(SIMD_TILE):
float16x8_t vs${N} = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn${N}), 10));
vn${N} = vsubq_f16(vn${N}, vmagic_bias);
$for N in range(SIMD_TILE):
float16x8_t vt${N} = vfmaq_f16(vz${N}, vn${N}, vminus_ln2);
$for N in range(SIMD_TILE):
float16x8_t vp${N} = vfmaq_f16(vc2, vc3, vt${N});
vp${N} = vmulq_f16(vp${N}, vt${N});
$for N in range(SIMD_TILE):
vt${N} = vmulq_f16(vt${N}, vs${N});
vs${N} = vfmsq_f16(vminus_alpha, vs${N}, vminus_alpha);
$for N in range(SIMD_TILE):
vp${N} = vfmaq_f16(vt${N}, vp${N}, vt${N});
$for N in range(SIMD_TILE):
float16x8_t ve${N} = vfmsq_f16(vs${N}, vp${N}, vminus_alpha);
const uint16x8_t vm${N} = vcltq_s16(vreinterpretq_s16_f16(vx${N}), vmovq_n_s16(0));
$for N in range(SIMD_TILE):
vx${N} = vmulq_f16(vx${N}, vbeta);
$for N in range(SIMD_TILE):
const float16x8_t vy${N} = vbslq_f16(vm${N}, ve${N}, vx${N});
$for N in range(SIMD_TILE):
vst1q_u16(o, vreinterpretq_u16_f16(vy${N})); o += 8;
}
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
float16x8_t vx = vreinterpretq_f16_u16(vld1q_u16(i)); i += 8;
float16x8_t vz = vmulq_f16(vx, vprescale);
vz = vmaxq_f16(vz, vsat_cutoff);
float16x8_t vn = vfmaq_f16(vmagic_bias, vz, vlog2e);
float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10));
vn = vsubq_f16(vn, vmagic_bias);
float16x8_t vt = vfmaq_f16(vz, vn, vminus_ln2);
float16x8_t vp = vfmaq_f16(vc2, vc3, vt);
vp = vmulq_f16(vp, vt);
vt = vmulq_f16(vt, vs);
vs = vfmsq_f16(vminus_alpha, vs, vminus_alpha);
vp = vfmaq_f16(vt, vp, vt);
float16x8_t ve = vfmsq_f16(vs, vp, vminus_alpha);
const uint16x8_t vm = vcltq_s16(vreinterpretq_s16_f16(vx), vmovq_n_s16(0));
vx = vmulq_f16(vx, vbeta);
const float16x8_t vy = vbslq_f16(vm, ve, vx);
vst1q_u16(o, vreinterpretq_u16_f16(vy)); o += 8;
}
if XNN_UNLIKELY(batch != 0) {
float16x8_t vx = vreinterpretq_f16_u16(vld1q_u16(i)); i += 8;
float16x8_t vz = vmulq_f16(vx, vprescale);
vz = vmaxq_f16(vz, vsat_cutoff);
float16x8_t vn = vfmaq_f16(vmagic_bias, vz, vlog2e);
float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10));
vn = vsubq_f16(vn, vmagic_bias);
float16x8_t vt = vfmaq_f16(vz, vn, vminus_ln2);
float16x8_t vp = vfmaq_f16(vc2, vc3, vt);
vp = vmulq_f16(vp, vt);
vt = vmulq_f16(vt, vs);
vs = vfmsq_f16(vminus_alpha, vs, vminus_alpha);
vp = vfmaq_f16(vt, vp, vt);
float16x8_t ve = vfmsq_f16(vs, vp, vminus_alpha);
const uint16x8_t vm = vcltq_s16(vreinterpretq_s16_f16(vx), vmovq_n_s16(0));
vx = vmulq_f16(vx, vbeta);
float16x8_t vy = vbslq_f16(vm, ve, vx);
float16x4_t vy_lo = vget_low_f16(vy);
if (batch & (4 * sizeof(uint16_t))) {
vst1_u16(o, vreinterpret_u16_f16(vy_lo)); o += 4;
vy_lo = vget_high_f16(vy);
}
if (batch & (2 * sizeof(uint16_t))) {
vst1_lane_u32((void*) o, vreinterpret_u32_f16(vy_lo), 0); o += 2;
vy_lo = vext_f16(vy_lo, vy_lo, 2);
}
if (batch & (1 * sizeof(uint16_t))) {
vst1_lane_u16(o, vreinterpret_u16_f16(vy_lo), 0);
}
}
}
|