File size: 3,360 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
// Auto-generated file. Do not edit!
// Template: src/f16-ibilinear/neonfp16arith.c.in
// Generator: tools/xngen
//
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/common.h>
#include <xnnpack/ibilinear.h>
void xnn_f16_ibilinear_ukernel__neonfp16arith_c8(
size_t output_pixels,
size_t channels,
const void** restrict input,
size_t input_offset,
const void* restrict weights,
void* restrict output,
size_t output_increment) XNN_OOB_READS
{
assert(output_pixels != 0);
assert(channels != 0);
assert(channels % sizeof(uint16_t) == 0);
uint16_t* o = (uint16_t*) output;
do {
const uint16_t* i0 = (const uint16_t*) ((uintptr_t) input[0] + input_offset);
const uint16_t* i1 = (const uint16_t*) ((uintptr_t) input[1] + input_offset);
const uint16_t* i2 = (const uint16_t*) ((uintptr_t) input[2] + input_offset);
const uint16_t* i3 = (const uint16_t*) ((uintptr_t) input[3] + input_offset);
input += 4;
const float16x8_t valphah = vreinterpretq_f16_u16(vld1q_dup_u16(weights)); weights = (const uint16_t*) weights + 1;
const float16x8_t valphav = vreinterpretq_f16_u16(vld1q_dup_u16(weights)); weights = (const uint16_t*) weights + 1;
size_t c = channels;
for (; c >= 8 * sizeof(uint16_t); c -= 8 * sizeof(uint16_t)) {
const float16x8_t vtl = vreinterpretq_f16_u16(vld1q_u16(i0)); i0 += 8;
const float16x8_t vtr = vreinterpretq_f16_u16(vld1q_u16(i1)); i1 += 8;
const float16x8_t vbl = vreinterpretq_f16_u16(vld1q_u16(i2)); i2 += 8;
const float16x8_t vbr = vreinterpretq_f16_u16(vld1q_u16(i3)); i3 += 8;
const float16x8_t vtd = vsubq_f16(vtr, vtl);
const float16x8_t vbd = vsubq_f16(vbr, vbl);
const float16x8_t vt = vfmaq_f16(vtl, vtd, valphah);
const float16x8_t vb = vfmaq_f16(vbl, vbd, valphah);
const float16x8_t vd = vsubq_f16(vb, vt);
const float16x8_t vo = vfmaq_f16(vt, vd, valphav);
vst1q_u16(o, vreinterpretq_u16_f16(vo)); o += 8;
}
if XNN_UNLIKELY(c != 0) {
const float16x8_t vtl = vreinterpretq_f16_u16(vld1q_u16(i0));
const float16x8_t vtr = vreinterpretq_f16_u16(vld1q_u16(i1));
const float16x8_t vbl = vreinterpretq_f16_u16(vld1q_u16(i2));
const float16x8_t vbr = vreinterpretq_f16_u16(vld1q_u16(i3));
const float16x8_t vtd = vsubq_f16(vtr, vtl);
const float16x8_t vbd = vsubq_f16(vbr, vbl);
const float16x8_t vt = vfmaq_f16(vtl, vtd, valphah);
const float16x8_t vb = vfmaq_f16(vbl, vbd, valphah);
const float16x8_t vd = vsubq_f16(vb, vt);
float16x8_t vo = vfmaq_f16(vt, vd, valphav);
float16x4_t vo_lo = vget_low_f16(vo);
if (c & (4 * sizeof(uint16_t))) {
vst1_u16(o, vreinterpret_u16_f16(vo_lo)); o += 4;
vo_lo = vget_high_f16(vo);
}
if (c & (2 * sizeof(uint16_t))) {
vst1_lane_u32((void*) o, vreinterpret_u32_f16(vo_lo), 0); o += 2;
vo_lo = vext_f16(vo_lo, vo_lo, 2);
}
if (c & (1 * sizeof(uint16_t))) {
vst1_lane_u16(o, vreinterpret_u16_f16(vo_lo), 0); o += 1;
}
}
o = (uint16_t*) ((uintptr_t) o + output_increment);
} while (--output_pixels != 0);
}
|