File size: 6,361 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert CHANNEL_TILE % 8 == 0
$assert KERNEL_TILE >= 2
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/dwconv.h>
void xnn_f16_dwconv_minmax_ukernel_${KERNEL_TILE}p${CHANNEL_TILE}c__neonfp16arith${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t channels,
size_t output_width,
const void** input,
const void* weights,
void* output_ptr,
intptr_t input_stride,
size_t output_increment,
size_t input_offset,
const void* zero,
const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
uint16_t* output = (uint16_t*) output_ptr;
const float16x8_t vmin = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith.min));
const float16x8_t vmax = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith.max));
do {
$for K in range(KERNEL_TILE):
const uint16_t* i${K} = (const uint16_t*) input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != (const uint16_t*) zero) {
i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset);
}
input = (const void**) ((uintptr_t) input + input_stride);
size_t c = channels;
const uint16_t* w = (const uint16_t*) weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
float16x8_t vacc${ABC[C:C+8]}p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 8):
const float16x8_t vi${K}x${ABC[C:C+8]} = vreinterpretq_f16_u16(vld1q_u16(i${K})); i${K} += 8;
$for C in range(0, CHANNEL_TILE, 8):
const float16x8_t vk${K}x${ABC[C:C+8]} = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
float16x8_t vacc${ABC[C:C+8]}p${K} = vmulq_f16(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = vfmaq_f16(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = vaddq_f16(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_STEP});
$ACC_STEP *= 2
$for C in range(0, CHANNEL_TILE, 8):
float16x8_t vacc${ABC[C:C+8]} = vmaxq_f16(vacc${ABC[C:C+8]}p0, vmin);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = vminq_f16(vacc${ABC[C:C+8]}, vmax);
$for C in range(0, CHANNEL_TILE, 8):
vst1q_u16(output, vreinterpretq_u16_f16(vacc${ABC[C:C+8]})); output += 8;
}
$if CHANNEL_TILE > 8:
for (; c >= 8; c -= 8) {
float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$for K in range(KERNEL_TILE):
const float16x8_t vi${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(i${K})); i${K} += 8;
const float16x8_t vk${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(w + ${(K + 1) * CHANNEL_TILE - 8}));
$if 1 <= K < ACCUMULATORS:
float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567);
$else:
vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567);
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP});
$ACC_STEP *= 2
float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin);
vacc01234567 = vminq_f16(vacc01234567, vmax);
vst1q_u16(output, vreinterpretq_u16_f16(vacc01234567)); output += 8;
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE == 8:
float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$else:
float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w));
$for K in range(KERNEL_TILE):
const float16x8_t vi${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(i${K}));
$if CHANNEL_TILE == 8:
const float16x8_t vk${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$else:
const float16x8_t vk${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(w + ${(K + 1) * CHANNEL_TILE}));
$if 1 <= K < ACCUMULATORS:
float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567);
$else:
vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567);
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP});
$ACC_STEP *= 2
float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin);
vacc01234567 = vminq_f16(vacc01234567, vmax);
float16x4_t vacc0123 = vget_low_f16(vacc01234567);
if (c & 4) {
vst1_u16(output, vreinterpret_u16_f16(vacc0123)); output += 4;
vacc0123 = vget_high_f16(vacc01234567);
}
if (c & 2) {
vst1_lane_u32((void*) output, vreinterpret_u32_f16(vacc0123), 0); output += 2;
vacc0123 = vext_f16(vacc0123, vacc0123, 2);
}
if (c & 1) {
vst1_lane_u16(output, vreinterpret_u16_f16(vacc0123), 0); output += 1;
}
}
output = (uint16_t*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}
|