File size: 21,452 Bytes
40588a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright 2023 The HuggingFace Team.
# Converted for use with ONNX as part of https://github.com/Amblyopius/Stable-Diffusion-ONNX-FP16
# Special thanks to https://github.com/uchuusen for the initial conversion effort

import inspect
from typing import Callable, List, Optional, Union

import numpy as np
import torch
import PIL
from transformers import CLIPFeatureExtractor, CLIPTokenizer

from diffusers.configuration_utils import FrozenDict
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, logging, PIL_INTERPOLATION
from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput


logger = logging.get_logger(__name__)


class OnnxStableDiffusionControlNetPipeline(DiffusionPipeline):
    vae_encoder: OnnxRuntimeModel
    vae_decoder: OnnxRuntimeModel
    text_encoder: OnnxRuntimeModel
    tokenizer: CLIPTokenizer
    unet: OnnxRuntimeModel
    controlnet: OnnxRuntimeModel
    scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
    safety_checker: OnnxRuntimeModel
    feature_extractor: CLIPFeatureExtractor

    _optional_components = ["safety_checker", "feature_extractor"]

    def __init__(
        self,
        vae_encoder: OnnxRuntimeModel,
        vae_decoder: OnnxRuntimeModel,
        text_encoder: OnnxRuntimeModel,
        tokenizer: CLIPTokenizer,
        unet: OnnxRuntimeModel,
        controlnet: OnnxRuntimeModel,
        scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
        safety_checker: OnnxRuntimeModel,
        feature_extractor: CLIPFeatureExtractor,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.register_modules(
            vae_encoder=vae_encoder,
            vae_decoder=vae_decoder,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        self.register_to_config(requires_safety_checker=requires_safety_checker)
        
        
    def _default_height_width(self, height, width, image):
        if isinstance(image, list):
            image = image[0]

        if height is None:
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, np.ndarray):
                height = image.shape[3]

            height = (height // 8) * 8  # round down to nearest multiple of 8

        if width is None:
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, np.ndarray):
                width = image.shape[2]

            width = (width // 8) * 8  # round down to nearest multiple of 8

        return height, width
        
    def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, dtype):
        if not isinstance(image, np.ndarray):
            if isinstance(image, PIL.Image.Image):
                image = [image]

            if isinstance(image[0], PIL.Image.Image):
                image = [
                    np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image
                ]
                image = np.concatenate(image, axis=0)
                image = np.array(image).astype(np.float32) / 255.0
                image = image.transpose(0, 3, 1, 2)
                image = torch.from_numpy(image)
            elif isinstance(image[0], np.ndarray):
                image = np.concatenate(image, axis=0)
                image = torch.from_numpy(image)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        return image
        
        
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // 8, width // 8)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = generator.randn(*shape).astype(dtype)


        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta, torch_gen):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = torch_gen
        return extra_step_kwargs

    def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
        """
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        # get prompt text embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids

        if not np.array_equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
        prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt] * batch_size
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )
            negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
            negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    def __call__(
        self,
        prompt: Union[str, List[str]],
        image: Union[np.ndarray, PIL.Image.Image] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
        generator: Optional[np.random.RandomState] = None,
        latents: Optional[np.ndarray] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
        callback_steps: int = 1,
        controlnet_conditioning_scale: float = 1.0,
    ):
        if isinstance(prompt, str):
            batch_size = 1
        elif isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
            
            
        if generator:
            torch_seed = generator.randint(2147483647)
            torch_gen = torch.Generator().manual_seed(torch_seed)
        else:
            generator = np.random
            torch_gen = None
            
        height, width = self._default_height_width(height, width, image)

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        prompt_embeds = self._encode_prompt(
            prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
        )
        
        # 4. Prepare image
        image = self.prepare_image(
            image,
            width,
            height,
            batch_size * num_images_per_prompt,
            num_images_per_prompt,
            np.float32,
        ).numpy()
        
        if do_classifier_free_guidance:
            image = np.concatenate([image] * 2)

        # get the initial random noise unless the user supplied it
        latents_dtype = prompt_embeds.dtype
        latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
        
        num_channels_latents = 4
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            latents_dtype,
            generator,
            latents,
        )
        
        # set timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps = self.scheduler.timesteps


        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta, torch_gen)

        timestep_dtype = next(
            (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
        )
        timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
        
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t)
                latent_model_input = latent_model_input.cpu().numpy()

                timestep = np.array([t], dtype=timestep_dtype)

                blocksamples = self.controlnet(
                    sample=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    controlnet_cond=image,
                    conditioning_scale=1.0
                )

                mid_block_res_sample=blocksamples[12]
                down_block_res_samples=blocksamples[0:12]

                down_block_res_samples = [
                    down_block_res_sample * controlnet_conditioning_scale
                    for down_block_res_sample in down_block_res_samples
                ]
                mid_block_res_sample *= controlnet_conditioning_scale

                # predict the noise residual
                
                noise_pred = self.unet(
                    sample=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    down_block_0=down_block_res_samples[0],
                    down_block_1=down_block_res_samples[1],
                    down_block_2=down_block_res_samples[2],
                    down_block_3=down_block_res_samples[3],
                    down_block_4=down_block_res_samples[4],
                    down_block_5=down_block_res_samples[5],
                    down_block_6=down_block_res_samples[6],
                    down_block_7=down_block_res_samples[7],
                    down_block_8=down_block_res_samples[8],
                    down_block_9=down_block_res_samples[9],
                    down_block_10=down_block_res_samples[10],
                    down_block_11=down_block_res_samples[11],
                    mid_block_additional_residual=mid_block_res_sample
                )
                noise_pred = noise_pred[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                scheduler_output = self.scheduler.step(
                    torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs
                )
                latents = scheduler_output.prev_sample.numpy()

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        latents = 1 / 0.18215 * latents
        # image = self.vae_decoder(latent_sample=latents)[0]
        # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
        image = np.concatenate(
            [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
        )

        image = np.clip(image / 2 + 0.5, 0, 1)
        image = image.transpose((0, 2, 3, 1))

        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(
                self.numpy_to_pil(image), return_tensors="np"
            ).pixel_values.astype(image.dtype)

            images, has_nsfw_concept = [], []
            for i in range(image.shape[0]):
                image_i, has_nsfw_concept_i = self.safety_checker(
                    clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
                )
                images.append(image_i)
                has_nsfw_concept.append(has_nsfw_concept_i[0])
            image = np.concatenate(images)
        else:
            has_nsfw_concept = None

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)