File size: 9,298 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <gtest/gtest.h>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <ios>
#include <limits>
#include <utility>
#include <vector>
#include <fp16/fp16.h>
#include "math-evaluation-tester.h"
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/math.h>
#include <xnnpack/math-stubs.h>
void MathEvaluationTester::TestOutputMatchReference(xnn_f16_unary_math_fn math_fn, float output_value) const {
ASSERT_FALSE(std::isnan(output_value));
ASSERT_FALSE(std::isnan(input_min()));
ASSERT_FALSE(std::isnan(input_max()));
ASSERT_LE(input_min(), input_max());
ASSERT_EQ(std::signbit(input_min()), std::signbit(input_max()));
ASSERT_EQ(fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_value)), output_value);
ASSERT_EQ(fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(input_min())), input_min());
ASSERT_EQ(fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(input_max())), input_max());
uint16_t range_min = fp16_ieee_from_fp32_value(std::fabs(input_min()));
uint16_t range_max = fp16_ieee_from_fp32_value(std::fabs(input_max()));
uint16_t range_sign = std::signbit(input_min()) ? UINT16_C(0x8000) : 0;
if (range_min > range_max) {
std::swap(range_min, range_max);
}
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint16_t block_start = range_min; block_start <= range_max; block_start += kBlockSize) {
for (uint16_t block_offset = 0; block_offset < kBlockSize; block_offset++) {
inputs[block_offset] = range_sign | std::min<uint16_t>(block_start + block_offset, range_max);
}
math_fn(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint16_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(output_value);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(4) << std::setfill('0') << inputs[i]
<< " (" << fp16_ieee_to_fp32_value(inputs[i]) << ")"
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< " (" << output_value << ")"
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]
<< " (" << fp16_ieee_to_fp32_value(outputs[i]) << ")";
}
}
}
void MathEvaluationTester::TestOutputMatchReference(xnn_f32_unary_math_fn math_fn, float output_value) const {
ASSERT_FALSE(std::isnan(output_value));
ASSERT_FALSE(std::isnan(input_min()));
ASSERT_FALSE(std::isnan(input_max()));
ASSERT_LE(input_min(), input_max());
ASSERT_EQ(std::signbit(input_min()), std::signbit(input_max()));
uint32_t range_min = float_as_uint32(std::fabs(input_min()));
uint32_t range_max = float_as_uint32(std::fabs(input_max()));
uint32_t range_sign = std::signbit(input_min()) ? UINT32_C(0x80000000) : 0;
if (range_min > range_max) {
std::swap(range_min, range_max);
}
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t block_start = range_min; block_start <= range_max; block_start += kBlockSize) {
for (uint32_t block_offset = 0; block_offset < kBlockSize; block_offset++) {
inputs[block_offset] = uint32_as_float(range_sign | std::min<uint32_t>(block_start + block_offset, range_max));
}
math_fn(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = float_as_uint32(output_value);
ASSERT_EQ(reference_output, float_as_uint32(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< " (" << inputs[i] << ")"
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< " (" << output_value << ")"
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]);
}
}
}
void MathEvaluationTester::TestOutputMatchZero(xnn_f32_unary_math_fn math_fn) const {
ASSERT_FALSE(std::isnan(input_min()));
ASSERT_FALSE(std::isnan(input_max()));
ASSERT_LE(input_min(), input_max());
ASSERT_EQ(std::signbit(input_min()), std::signbit(input_max()));
uint32_t range_min = float_as_uint32(std::fabs(input_min()));
uint32_t range_max = float_as_uint32(std::fabs(input_max()));
uint32_t range_sign = std::signbit(input_min()) ? UINT32_C(0x80000000) : 0;
if (range_min > range_max) {
std::swap(range_min, range_max);
}
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t block_start = range_min; block_start <= range_max; block_start += kBlockSize) {
for (uint32_t block_offset = 0; block_offset < kBlockSize; block_offset++) {
inputs[block_offset] = uint32_as_float(range_sign | std::min<uint32_t>(block_start + block_offset, range_max));
}
math_fn(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_EQ(0.0f, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< " (" << inputs[i] << ")"
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]);
}
}
}
void MathEvaluationTester::TestNaN(xnn_f16_unary_math_fn math_fn) const {
ASSERT_TRUE(std::isnan(input_min()));
ASSERT_TRUE(std::isnan(input_max()));
const uint16_t range_min = UINT16_C(0x7C01);
const uint16_t range_max = UINT16_C(0x7FFF);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
// Positive NaN inputs
for (uint16_t block_start = range_min; block_start <= range_max; block_start += kBlockSize) {
for (uint16_t block_offset = 0; block_offset < kBlockSize; block_offset++) {
inputs[block_offset] = std::min<uint16_t>(block_start + block_offset, range_max);
}
math_fn(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint16_t i = 0; i < kBlockSize; i++) {
ASSERT_TRUE(std::isnan(fp16_ieee_to_fp32_value(outputs[i])))
<< "input = 0x" << std::hex << std::setw(4) << std::setfill('0') << inputs[i]
<< ", output = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
// Negative NaN inputs
for (uint16_t block_start = range_min; block_start <= range_max; block_start += kBlockSize) {
for (uint16_t block_offset = 0; block_offset < kBlockSize; block_offset++) {
inputs[block_offset] =
UINT16_C(0x8000) | std::min<uint16_t>(block_start + block_offset, range_max);
}
math_fn(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint16_t i = 0; i < kBlockSize; i++) {
ASSERT_TRUE(std::isnan(fp16_ieee_to_fp32_value(outputs[i])))
<< "input = 0x" << std::hex << std::setw(4) << std::setfill('0') << inputs[i]
<< ", output = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
void MathEvaluationTester::TestNaN(xnn_f32_unary_math_fn math_fn) const {
ASSERT_TRUE(std::isnan(input_min()));
ASSERT_TRUE(std::isnan(input_max()));
const uint32_t range_min = UINT32_C(0x7F800001);
const uint32_t range_max = UINT32_C(0x7FFFFFFF);
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
// Positive NaN inputs
for (uint32_t block_start = range_min; block_start <= range_max; block_start += kBlockSize) {
for (uint32_t block_offset = 0; block_offset < kBlockSize; block_offset++) {
inputs[block_offset] = uint32_as_float(std::min<uint32_t>(block_start + block_offset, range_max));
}
math_fn(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_TRUE(std::isnan(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", output = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]);
}
}
// Negative NaN inputs
for (uint32_t block_start = range_min; block_start <= range_max; block_start += kBlockSize) {
for (uint32_t block_offset = 0; block_offset < kBlockSize; block_offset++) {
inputs[block_offset] =
uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(block_start + block_offset, range_max));
}
math_fn(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_TRUE(std::isnan(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", output = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]);
}
}
}
|