File size: 7,380 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
#include <benchmark/benchmark.h>
#include <fp16.h>
#ifndef EMSCRIPTEN
#include <fp16/psimd.h>
#endif
#if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__)
#include <immintrin.h>
#endif
#ifdef FP16_COMPARATIVE_BENCHMARKS
#include <third-party/THHalf.h>
#include <third-party/npy-halffloat.h>
#include <third-party/eigen-half.h>
#include <third-party/float16-compressor.h>
#include <third-party/half.hpp>
#endif
static inline uint16_t next_xorshift16(uint16_t x) {
x ^= x >> 8;
x ^= x << 9;
x ^= x >> 5;
return x;
}
static inline uint32_t next_xorshift32(uint32_t x) {
x ^= x >> 13;
x ^= x << 17;
x ^= x >> 5;
return x;
}
#ifndef EMSCRIPTEN
PSIMD_INTRINSIC psimd_u16 next_xorshift16_psimd(psimd_u16 x) {
x ^= x >> psimd_splat_u16(8);
x ^= x << psimd_splat_u16(9);
x ^= x >> psimd_splat_u16(5);
return x;
}
#endif
/* Conversion from IEEE FP16 to IEEE FP32 */
static void fp16_ieee_to_fp32_bits(benchmark::State& state) {
uint16_t fp16 = UINT16_C(0x7C00);
while (state.KeepRunning()) {
const uint32_t fp32 = fp16_ieee_to_fp32_bits(fp16);
fp16 = next_xorshift16(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(fp16_ieee_to_fp32_bits);
static void fp16_ieee_to_fp32_value(benchmark::State& state) {
uint16_t fp16 = UINT16_C(0x7C00);
while (state.KeepRunning()) {
const float fp32 = fp16_ieee_to_fp32_value(fp16);
fp16 = next_xorshift16(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(fp16_ieee_to_fp32_value);
#ifndef EMSCRIPTEN
static void fp16_ieee_to_fp32_psimd(benchmark::State& state) {
psimd_u16 fp16 = (psimd_u16) { 0x7C00, 0x7C01, 0x7C02, 0x7C03 };
while (state.KeepRunning()) {
const psimd_f32 fp32 = fp16_ieee_to_fp32_psimd(fp16);
fp16 = next_xorshift16_psimd(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(fp16_ieee_to_fp32_psimd);
static void fp16_ieee_to_fp32x2_psimd(benchmark::State& state) {
psimd_u16 fp16 =
(psimd_u16) { 0x7C00, 0x7C01, 0x7C02, 0x7C03, 0x7C04, 0x7C05, 0x7C06, 0x7C07 };
while (state.KeepRunning()) {
const psimd_f32x2 fp32 = fp16_ieee_to_fp32x2_psimd(fp16);
fp16 = next_xorshift16_psimd(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(fp16_ieee_to_fp32x2_psimd);
#endif
#ifdef FP16_COMPARATIVE_BENCHMARKS
static void TH_halfbits2float(benchmark::State& state) {
uint16_t fp16 = UINT16_C(0x7C00);
while (state.KeepRunning()) {
float fp32;
TH_halfbits2float(&fp16, &fp32);
fp16 = next_xorshift16(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(TH_halfbits2float);
static void npy_halfbits_to_floatbits(benchmark::State& state) {
uint16_t fp16 = UINT16_C(0x7C00);
while (state.KeepRunning()) {
const uint32_t fp32 = npy_halfbits_to_floatbits(fp16);
fp16 = next_xorshift16(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(npy_halfbits_to_floatbits);
static void Eigen_half_to_float(benchmark::State& state) {
uint16_t fp16 = UINT16_C(0x7C00);
while (state.KeepRunning()) {
const float fp32 =
Eigen::half_impl::half_to_float(
Eigen::half_impl::raw_uint16_to_half(fp16));
fp16 = next_xorshift16(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(Eigen_half_to_float);
static void Float16Compressor_decompress(benchmark::State& state) {
uint16_t fp16 = UINT16_C(0x7C00);
while (state.KeepRunning()) {
const float fp32 = Float16Compressor::decompress(fp16);
fp16 = next_xorshift16(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(Float16Compressor_decompress);
static void half_float_detail_half2float_table(benchmark::State& state) {
uint16_t fp16 = UINT16_C(0x7C00);
while (state.KeepRunning()) {
const float fp32 =
half_float::detail::half2float_impl(fp16,
half_float::detail::true_type());
fp16 = next_xorshift16(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(half_float_detail_half2float_table);
static void half_float_detail_half2float_branch(benchmark::State& state) {
uint16_t fp16 = UINT16_C(0x7C00);
while (state.KeepRunning()) {
const float fp32 =
half_float::detail::half2float_impl(fp16,
half_float::detail::false_type());
fp16 = next_xorshift16(fp16);
benchmark::DoNotOptimize(fp32);
}
}
BENCHMARK(half_float_detail_half2float_branch);
#endif
/* Conversion from IEEE FP32 to IEEE FP16 */
static void fp16_ieee_from_fp32_value(benchmark::State& state) {
uint32_t fp32 = UINT32_C(0x7F800000);
while (state.KeepRunning()) {
const uint16_t fp16 = fp16_ieee_from_fp32_value(fp32_from_bits(fp32));
fp32 = next_xorshift32(fp32);
benchmark::DoNotOptimize(fp16);
}
}
BENCHMARK(fp16_ieee_from_fp32_value);
#if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__)
static void fp16_ieee_from_fp32_hardware(benchmark::State& state) {
uint32_t fp32 = UINT32_C(0x7F800000);
while (state.KeepRunning()) {
const uint16_t fp16 = static_cast<uint16_t>(
_mm_cvtsi128_si32(_mm_cvtps_ph(_mm_set_ss(fp32), _MM_FROUND_CUR_DIRECTION)));
fp32 = next_xorshift32(fp32);
benchmark::DoNotOptimize(fp16);
}
}
BENCHMARK(fp16_ieee_from_fp32_hardware);
#endif
#ifdef FP16_COMPARATIVE_BENCHMARKS
static void TH_float2halfbits(benchmark::State& state) {
uint32_t fp32 = UINT32_C(0x7F800000);
while (state.KeepRunning()) {
uint16_t fp16;
float fp32_value = fp32_from_bits(fp32);
TH_float2halfbits(&fp32_value, &fp16);
fp32 = next_xorshift32(fp32);
benchmark::DoNotOptimize(fp16);
}
}
BENCHMARK(TH_float2halfbits);
static void npy_floatbits_to_halfbits(benchmark::State& state) {
uint32_t fp32 = UINT32_C(0x7F800000);
while (state.KeepRunning()) {
const uint16_t fp16 = npy_floatbits_to_halfbits(fp32);
fp32 = next_xorshift32(fp32);
benchmark::DoNotOptimize(fp16);
}
}
BENCHMARK(npy_floatbits_to_halfbits);
static void Eigen_float_to_half_rtne(benchmark::State& state) {
uint32_t fp32 = UINT32_C(0x7F800000);
while (state.KeepRunning()) {
const Eigen::half_impl::__half fp16 =
Eigen::half_impl::float_to_half_rtne(
fp32_from_bits(fp32));
fp32 = next_xorshift32(fp32);
benchmark::DoNotOptimize(fp16);
}
}
BENCHMARK(Eigen_float_to_half_rtne);
static void Float16Compressor_compress(benchmark::State& state) {
uint32_t fp32 = UINT32_C(0x7F800000);
while (state.KeepRunning()) {
const uint16_t fp16 = Float16Compressor::compress(fp32_from_bits(fp32));
fp32 = next_xorshift32(fp32);
benchmark::DoNotOptimize(fp16);
}
}
BENCHMARK(Float16Compressor_compress);
static void half_float_detail_float2half_table(benchmark::State& state) {
uint32_t fp32 = UINT32_C(0x7F800000);
while (state.KeepRunning()) {
const uint16_t fp16 =
half_float::detail::float2half_impl<std::round_to_nearest>(
fp32_from_bits(fp32),
half_float::detail::true_type());
fp32 = next_xorshift32(fp32);
benchmark::DoNotOptimize(fp16);
}
}
BENCHMARK(half_float_detail_float2half_table);
static void half_float_detail_float2half_branch(benchmark::State& state) {
uint32_t fp32 = UINT32_C(0x7F800000);
while (state.KeepRunning()) {
const uint16_t fp16 =
half_float::detail::float2half_impl<std::round_to_nearest>(
fp32_from_bits(fp32),
half_float::detail::false_type());
fp32 = next_xorshift32(fp32);
benchmark::DoNotOptimize(fp16);
}
}
BENCHMARK(half_float_detail_float2half_branch);
#endif
BENCHMARK_MAIN();
|