File size: 5,627 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <functional>
#include <random>
#include <vector>
#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/utils.h"
#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/reduce.h>
static void f16_f32acc_rsum(
benchmark::State& state,
xnn_f16_f32acc_rsum_ukernel_fn rsum,
xnn_init_f16_f32acc_scale_params_fn init_params,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t elements = state.range(0);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> input(elements);
std::generate(input.begin(), input.end(), std::ref(f16rng));
xnn_f16_f32acc_scale_params params;
init_params(¶ms, /*scale=*/0.1f);
uint16_t output = UINT16_C(0x7E00); /* NaN */
for (auto _ : state) {
rsum(elements * sizeof(uint16_t), input.data(), &output, ¶ms);
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = elements;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = elements * sizeof(uint16_t);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
BENCHMARK_CAPTURE(f16_f32acc_rsum, neonfp16_x4,
xnn_f16_f32acc_rsum_ukernel__neonfp16_x4,
xnn_init_f16_f32acc_scale_scalar_params,
benchmark::utils::CheckNEONFP16)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_f32acc_rsum, neonfp16_x8,
xnn_f16_f32acc_rsum_ukernel__neonfp16_x8,
xnn_init_f16_f32acc_scale_scalar_params,
benchmark::utils::CheckNEONFP16)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_f32acc_rsum, neonfp16_x16_acc2,
xnn_f16_f32acc_rsum_ukernel__neonfp16_x16_acc2,
xnn_init_f16_f32acc_scale_scalar_params,
benchmark::utils::CheckNEONFP16)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_f32acc_rsum, neonfp16_x24_acc3,
xnn_f16_f32acc_rsum_ukernel__neonfp16_x24_acc3,
xnn_init_f16_f32acc_scale_scalar_params,
benchmark::utils::CheckNEONFP16)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_f32acc_rsum, neonfp16_x32_acc2,
xnn_f16_f32acc_rsum_ukernel__neonfp16_x32_acc2,
xnn_init_f16_f32acc_scale_scalar_params,
benchmark::utils::CheckNEONFP16)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_f32acc_rsum, neonfp16_x32_acc4,
xnn_f16_f32acc_rsum_ukernel__neonfp16_x32_acc4,
xnn_init_f16_f32acc_scale_scalar_params,
benchmark::utils::CheckNEONFP16)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
BENCHMARK_CAPTURE(f16_f32acc_rsum, f16c_x8,
xnn_f16_f32acc_rsum_ukernel__f16c_x8,
xnn_init_f16_f32acc_scale_avx_params,
benchmark::utils::CheckF16C)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_f32acc_rsum, f16c_x16_acc2,
xnn_f16_f32acc_rsum_ukernel__f16c_x16_acc2,
xnn_init_f16_f32acc_scale_avx_params,
benchmark::utils::CheckF16C)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_f32acc_rsum, f16c_x24_acc3,
xnn_f16_f32acc_rsum_ukernel__f16c_x24_acc3,
xnn_init_f16_f32acc_scale_avx_params,
benchmark::utils::CheckF16C)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_f32acc_rsum, f16c_x32_acc2,
xnn_f16_f32acc_rsum_ukernel__f16c_x32_acc2,
xnn_init_f16_f32acc_scale_avx_params,
benchmark::utils::CheckF16C)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_f32acc_rsum, f16c_x32_acc4,
xnn_f16_f32acc_rsum_ukernel__f16c_x32_acc4,
xnn_init_f16_f32acc_scale_avx_params,
benchmark::utils::CheckF16C)
->Apply(benchmark::utils::ReductionParameters<uint16_t>)
->UseRealTime();
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif
|