File size: 11,452 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <random>
#include <vector>
#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/gemm.h"
#include "bench/utils.h"
#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/gemm.h>
#include <xnnpack/math.h>
#include <xnnpack/pack.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
static void bf16_gemm(benchmark::State& state,
xnn_bf16_gemm_minmax_ukernel_fn gemm,
size_t mr, size_t nr, size_t kr, size_t sr,
xnn_init_bf16_minmax_params_fn init_params,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<uint16_t> a(mc * kc + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::generate(a.begin(), a.end(), [&] { return fp32_to_bits(f32rng(rng)) >> 16; });
std::vector<uint16_t> k(nc * kc);
std::generate(k.begin(), k.end(), [&] { return fp32_to_bits(f32rng(rng)) >> 16; });
std::vector<uint16_t> b(nc);
std::generate(b.begin(), b.end(), [&] { return fp32_to_bits(f32rng(rng)) >> 16; });
const size_t w_elements = nc_stride * kc_stride + nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(uint16_t) * (w_elements + c_elements));
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> w(w_elements * num_buffers);
std::fill(w.begin(), w.end(), 0);
xnn_pack_f16_gemm_goi_w(1 /* groups */, nc, kc, nr, kr, sr, k.data(), b.data(), w.data(), 0, nullptr);
std::vector<uint16_t> c(c_elements * num_buffers);
std::fill(c.begin(), c.end(), UINT16_C(0x7FC0) /* NaN */);
// Prepare minmax parameters.
xnn_bf16_minmax_params params;
init_params(¶ms,
UINT16_C(0xFF80) /* -inf */, UINT16_C(0x7F80) /* inf */);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
for (uint32_t n = 0; n < nc; n += nr) {
const uint32_t nb = min(nc - n, nr);
gemm(
mb, nb, kc * sizeof(uint16_t),
a.data() + m * kc, kc * sizeof(uint16_t),
w.data() + (nc_stride * buffer_index + n) * (kc_stride + 1),
c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(uint16_t), nr * sizeof(uint16_t),
¶ms);
}
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["FLOPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
#if XNN_ENABLE_ARM_BF16 && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
static void bf16_gemm_1x8c2__neonbf16_bfdot_lane_ld128(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x8c2__neonbf16_bfdot_lane_ld128, 1, 8, 2, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_4x8c2__neonbf16_bfdot_lane_ld128(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x8c2__neonbf16_bfdot_lane_ld128, 4, 8, 2, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_5x8c2__neonbf16_bfdot_lane_ld128(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x8c2__neonbf16_bfdot_lane_ld128, 5, 8, 2, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_6x8c2__neonbf16_bfdot_lane_ld128(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_6x8c2__neonbf16_bfdot_lane_ld128, 6, 8, 2, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_1x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x4c8__neonbf16_bfdot, 1, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_2x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_2x4c8__neonbf16_bfdot, 2, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_3x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_3x4c8__neonbf16_bfdot, 3, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_4x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x4c8__neonbf16_bfdot, 4, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_5x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x4c8__neonbf16_bfdot, 5, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_1x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x4c8__neonbf16_bfmlal, 1, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_2x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_2x4c8__neonbf16_bfmlal, 2, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_3x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_3x4c8__neonbf16_bfmlal, 3, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_4x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x4c8__neonbf16_bfmlal, 4, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
static void bf16_gemm_5x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x4c8__neonbf16_bfmlal, 5, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16);
}
BENCHMARK_GEMM(bf16_gemm_1x8c2__neonbf16_bfdot_lane_ld128)
BENCHMARK_GEMM(bf16_gemm_4x8c2__neonbf16_bfdot_lane_ld128)
BENCHMARK_GEMM(bf16_gemm_5x8c2__neonbf16_bfdot_lane_ld128)
BENCHMARK_GEMM(bf16_gemm_6x8c2__neonbf16_bfdot_lane_ld128)
BENCHMARK_GEMM(bf16_gemm_1x4c8__neonbf16_bfdot)
BENCHMARK_GEMM(bf16_gemm_2x4c8__neonbf16_bfdot)
BENCHMARK_GEMM(bf16_gemm_3x4c8__neonbf16_bfdot)
BENCHMARK_GEMM(bf16_gemm_4x4c8__neonbf16_bfdot)
BENCHMARK_GEMM(bf16_gemm_5x4c8__neonbf16_bfdot)
BENCHMARK_GEMM(bf16_gemm_1x4c8__neonbf16_bfmlal)
BENCHMARK_GEMM(bf16_gemm_2x4c8__neonbf16_bfmlal)
BENCHMARK_GEMM(bf16_gemm_3x4c8__neonbf16_bfmlal)
BENCHMARK_GEMM(bf16_gemm_4x4c8__neonbf16_bfmlal)
BENCHMARK_GEMM(bf16_gemm_5x4c8__neonbf16_bfmlal)
#endif // XNN_ENABLE_ARM_BF16 && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
static void bf16_gemm_1x4c8__neonfma_zip(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x4c8__neonfma_zip, 1, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
static void bf16_gemm_2x4c8__neonfma_zip(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_2x4c8__neonfma_zip, 2, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
static void bf16_gemm_3x4c8__neonfma_zip(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_3x4c8__neonfma_zip, 3, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
static void bf16_gemm_4x4c8__neonfma_zip(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x4c8__neonfma_zip, 4, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
static void bf16_gemm_5x4c8__neonfma_zip(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x4c8__neonfma_zip, 5, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
static void bf16_gemm_1x4c8__neonfma_shland(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x4c8__neonfma_shland, 1, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
static void bf16_gemm_2x4c8__neonfma_shland(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_2x4c8__neonfma_shland, 2, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
static void bf16_gemm_3x4c8__neonfma_shland(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_3x4c8__neonfma_shland, 3, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
static void bf16_gemm_4x4c8__neonfma_shland(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x4c8__neonfma_shland, 4, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
static void bf16_gemm_5x4c8__neonfma_shland(benchmark::State& state, const char* net) {
bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x4c8__neonfma_shland, 5, 4, 8, 1,
xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA);
}
BENCHMARK_GEMM(bf16_gemm_1x4c8__neonfma_zip)
BENCHMARK_GEMM(bf16_gemm_2x4c8__neonfma_zip)
BENCHMARK_GEMM(bf16_gemm_3x4c8__neonfma_zip)
BENCHMARK_GEMM(bf16_gemm_4x4c8__neonfma_zip)
BENCHMARK_GEMM(bf16_gemm_5x4c8__neonfma_zip)
BENCHMARK_GEMM(bf16_gemm_1x4c8__neonfma_shland)
BENCHMARK_GEMM(bf16_gemm_2x4c8__neonfma_shland)
BENCHMARK_GEMM(bf16_gemm_3x4c8__neonfma_shland)
BENCHMARK_GEMM(bf16_gemm_4x4c8__neonfma_shland)
BENCHMARK_GEMM(bf16_gemm_5x4c8__neonfma_shland)
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif
|