File size: 9,979 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <array>
#include <cmath>
#include <functional>
#include <limits>
#include <memory>
#include <random>
#include <vector>
#include <fp16/fp16.h>
#include <xnnpack.h>
#include <benchmark/benchmark.h>
#include "bench/utils.h"
#ifdef BENCHMARK_TENSORFLOW_LITE
#include "flatbuffers/include/flatbuffers/flatbuffers.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#endif // BENCHMARK_TENSORFLOW_LITE
static void xnnpack_bankers_rounding_f16(benchmark::State& state) {
const size_t batch_size = state.range(0);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> output(batch_size);
std::generate(input.begin(), input.end(), std::ref(f16rng));
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
xnn_status status = xnn_initialize(nullptr /* allocator */);
if (status != xnn_status_success) {
state.SkipWithError("failed to initialize XNNPACK");
return;
}
xnn_operator_t bankers_rounding_op = nullptr;
status = xnn_create_bankers_rounding_nc_f16(
1 /* channels */, 1 /* input stride */, 1 /* output stride */,
0 /* flags */, &bankers_rounding_op);
if (status != xnn_status_success || bankers_rounding_op == nullptr) {
state.SkipWithError("failed to create Bankers' Rounding operator");
return;
}
status = xnn_reshape_bankers_rounding_nc_f16(bankers_rounding_op, batch_size, /*threadpool=*/nullptr);
if (status != xnn_status_success) {
state.SkipWithError("failed to reshape Bankers' Rounding operator");
return;
}
status = xnn_setup_bankers_rounding_nc_f16(bankers_rounding_op, input.data(), output.data());
if (status != xnn_status_success) {
state.SkipWithError("failed to setup Bankers' Rounding operator");
return;
}
for (auto _ : state) {
status = xnn_run_operator(bankers_rounding_op, nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to run Bankers' Rounding operator");
return;
}
}
status = xnn_delete_operator(bankers_rounding_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to delete Bankers' Rounding operator");
return;
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * batch_size * sizeof(uint16_t);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
static void xnnpack_bankers_rounding_f32(benchmark::State& state) {
const size_t batch_size = state.range(0);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> output(batch_size);
std::generate(input.begin(), input.end(), std::ref(f32rng));
std::fill(output.begin(), output.end(), std::nanf(""));
xnn_status status = xnn_initialize(nullptr /* allocator */);
if (status != xnn_status_success) {
state.SkipWithError("failed to initialize XNNPACK");
return;
}
xnn_operator_t bankers_rounding_op = nullptr;
status = xnn_create_bankers_rounding_nc_f32(
1 /* channels */, 1 /* input stride */, 1 /* output stride */,
0 /* flags */, &bankers_rounding_op);
if (status != xnn_status_success || bankers_rounding_op == nullptr) {
state.SkipWithError("failed to create Bankers' Rounding operator");
return;
}
status = xnn_reshape_bankers_rounding_nc_f32(bankers_rounding_op, batch_size, /*threadpool=*/nullptr);
if (status != xnn_status_success) {
state.SkipWithError("failed to reshape Bankers' Rounding operator");
return;
}
status = xnn_setup_bankers_rounding_nc_f32(bankers_rounding_op, input.data(), output.data());
if (status != xnn_status_success) {
state.SkipWithError("failed to setup Bankers' Rounding operator");
return;
}
for (auto _ : state) {
status = xnn_run_operator(bankers_rounding_op, nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to run Bankers' Rounding operator");
return;
}
}
status = xnn_delete_operator(bankers_rounding_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to delete Bankers' Rounding operator");
return;
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * batch_size * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
#ifdef BENCHMARK_TENSORFLOW_LITE
static void tflite_bankers_rounding_f32(benchmark::State& state) {
const size_t batch_size = state.range(0);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
flatbuffers::FlatBufferBuilder builder;
const flatbuffers::Offset<tflite::OperatorCode> operator_code =
CreateOperatorCode(builder, tflite::BuiltinOperator_ROUND);
const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
tflite::CreateBuffer(builder, builder.CreateVector({})),
}};
const std::array<int32_t, 1> shape{{
static_cast<int32_t>(batch_size)
}};
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
tflite::CreateTensor(builder,
builder.CreateVector<int32_t>(shape.data(), shape.size()),
tflite::TensorType_FLOAT32),
tflite::CreateTensor(builder,
builder.CreateVector<int32_t>(shape.data(), shape.size()),
tflite::TensorType_FLOAT32),
}};
const std::array<int32_t, 1> op_inputs{{ 0 }};
const std::array<int32_t, 1> op_outputs{{ 1 }};
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(
builder,
0 /* opcode_index */,
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
const std::array<int32_t, 1> graph_inputs{{ 0 }};
const std::array<int32_t, 1> graph_outputs{{ 1 }};
const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
builder,
builder.CreateVector(tensors.data(), tensors.size()),
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
builder.CreateVector(&op, 1));
const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
TFLITE_SCHEMA_VERSION,
builder.CreateVector(&operator_code, 1),
builder.CreateVector(&subgraph, 1),
builder.CreateString("Round model"),
builder.CreateVector(buffers.data(), buffers.size()));
builder.Finish(model_buffer);
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver;
tflite::InterpreterBuilder interpreterBuilder(model, resolver);
std::unique_ptr<tflite::Interpreter> interpreter;
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) {
state.SkipWithError("failed to create TFLite interpreter");
return;
}
interpreter->SetNumThreads(1);
if (interpreter->AllocateTensors() != kTfLiteOk) {
state.SkipWithError("failed to allocate tensors");
return;
}
std::generate(
interpreter->typed_tensor<float>(0),
interpreter->typed_tensor<float>(0) + batch_size,
std::ref(f32rng));
for (auto _ : state) {
if (interpreter->Invoke() != kTfLiteOk) {
state.SkipWithError("failed to invoke TFLite interpreter");
return;
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * batch_size * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
interpreter.reset();
}
#endif // BENCHMARK_TENSORFLOW_LITE
BENCHMARK(xnnpack_bankers_rounding_f16)
->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>)
->UseRealTime();
BENCHMARK(xnnpack_bankers_rounding_f32)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
#ifdef BENCHMARK_TENSORFLOW_LITE
BENCHMARK(tflite_bankers_rounding_f32)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
#endif // BENCHMARK_TENSORFLOW_LITE
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif
|