File size: 7,785 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#pragma once

#include <gtest/gtest.h>

#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <memory>
#include <random>
#include <vector>

#include <fp16/fp16.h>

#include <xnnpack.h>


class AbsOperatorTester {
 public:
  inline AbsOperatorTester& channels(size_t channels) {
    assert(channels != 0);
    this->channels_ = channels;
    return *this;
  }

  inline size_t channels() const {
    return this->channels_;
  }

  inline AbsOperatorTester& input_stride(size_t input_stride) {
    assert(input_stride != 0);
    this->input_stride_ = input_stride;
    return *this;
  }

  inline size_t input_stride() const {
    if (this->input_stride_ == 0) {
      return this->channels_;
    } else {
      assert(this->input_stride_ >= this->channels_);
      return this->input_stride_;
    }
  }

  inline AbsOperatorTester& output_stride(size_t output_stride) {
    assert(output_stride != 0);
    this->output_stride_ = output_stride;
    return *this;
  }

  inline size_t output_stride() const {
    if (this->output_stride_ == 0) {
      return this->channels_;
    } else {
      assert(this->output_stride_ >= this->channels_);
      return this->output_stride_;
    }
  }

  inline AbsOperatorTester& batch_size(size_t batch_size) {
    assert(batch_size != 0);
    this->batch_size_ = batch_size;
    return *this;
  }

  inline size_t batch_size() const {
    return this->batch_size_;
  }

  inline AbsOperatorTester& iterations(size_t iterations) {
    this->iterations_ = iterations;
    return *this;
  }

  inline size_t iterations() const {
    return this->iterations_;
  }

  void TestF16() const {
    std::random_device random_device;
    auto rng = std::mt19937(random_device());
    std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);

    std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
      (batch_size() - 1) * input_stride() + channels());
    std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels());
    std::vector<uint16_t> output_ref(batch_size() * channels());
    for (size_t iteration = 0; iteration < iterations(); iteration++) {
      std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
      std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);

      // Compute reference results.
      for (size_t i = 0; i < batch_size(); i++) {
        for (size_t c = 0; c < channels(); c++) {
          output_ref[i * channels() + c] = input[i * input_stride() + c] & UINT16_C(0x7FFF);
        }
      }

      // Create, setup, run, and destroy Abs operator.
      ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
      xnn_operator_t abs_op = nullptr;

      const xnn_status status = xnn_create_abs_nc_f16(
        channels(), input_stride(), output_stride(),
        0, &abs_op);
      if (status == xnn_status_unsupported_hardware) {
        GTEST_SKIP();
      }
      ASSERT_EQ(xnn_status_success, status);
      ASSERT_NE(nullptr, abs_op);

      // Smart pointer to automatically delete abs_op.
      std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_abs_op(abs_op, xnn_delete_operator);

      ASSERT_EQ(xnn_status_success, xnn_reshape_abs_nc_f16(abs_op, batch_size(), /*threadpool=*/nullptr));
      ASSERT_EQ(xnn_status_success, xnn_setup_abs_nc_f16(abs_op, input.data(), output.data()));
      ASSERT_EQ(xnn_status_success, xnn_run_operator(abs_op, /*threadpool=*/nullptr));

      // Verify results.
      for (size_t i = 0; i < batch_size(); i++) {
        for (size_t c = 0; c < channels(); c++) {
          EXPECT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
            << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
        }
      }
    }
  }

  void TestF32() const {
    std::random_device random_device;
    auto rng = std::mt19937(random_device());
    std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);

    std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
      (batch_size() - 1) * input_stride() + channels());
    std::vector<float> output((batch_size() - 1) * output_stride() + channels());
    std::vector<float> output_ref(batch_size() * channels());
    for (size_t iteration = 0; iteration < iterations(); iteration++) {
      std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
      std::fill(output.begin(), output.end(), std::nanf(""));

      // Compute reference results.
      for (size_t i = 0; i < batch_size(); i++) {
        for (size_t c = 0; c < channels(); c++) {
          output_ref[i * channels() + c] = std::fabs(input[i * input_stride() + c]);
        }
      }

      // Create, setup, run, and destroy Abs operator.
      ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
      xnn_operator_t abs_op = nullptr;

      ASSERT_EQ(xnn_status_success,
        xnn_create_abs_nc_f32(
          channels(), input_stride(), output_stride(),
          0, &abs_op));
      ASSERT_NE(nullptr, abs_op);

      // Smart pointer to automatically delete abs_op.
      std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_abs_op(abs_op, xnn_delete_operator);

      ASSERT_EQ(xnn_status_success, xnn_reshape_abs_nc_f32(abs_op, batch_size(), /*threadpool=*/nullptr));
      ASSERT_EQ(xnn_status_success, xnn_setup_abs_nc_f32(abs_op, input.data(), output.data()));
      ASSERT_EQ(xnn_status_success, xnn_run_operator(abs_op, /*threadpool=*/nullptr));

      // Verify results.
      for (size_t i = 0; i < batch_size(); i++) {
        for (size_t c = 0; c < channels(); c++) {
          EXPECT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
            << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
        }
      }
    }
  }

  void TestRunF32() const {
    std::random_device random_device;
    auto rng = std::mt19937(random_device());
    std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);

    std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
      (batch_size() - 1) * input_stride() + channels());
    std::vector<float> output((batch_size() - 1) * output_stride() + channels());
    std::vector<float> output_ref(batch_size() * channels());
    for (size_t iteration = 0; iteration < iterations(); iteration++) {
      std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
      std::fill(output.begin(), output.end(), std::nanf(""));

      // Compute reference results.
      for (size_t i = 0; i < batch_size(); i++) {
        for (size_t c = 0; c < channels(); c++) {
          output_ref[i * channels() + c] = std::fabs(input[i * input_stride() + c]);
        }
      }

      ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));

      ASSERT_EQ(xnn_status_success,
      xnn_run_abs_nc_f32(
        channels(),
        input_stride(),
        output_stride(),
        batch_size(),
        input.data(),
        output.data(),
        0,
        nullptr  /* thread pool */));

      // Verify results.
      for (size_t i = 0; i < batch_size(); i++) {
        for (size_t c = 0; c < channels(); c++) {
          EXPECT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
            << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
        }
      }
    }
  }

 private:
  size_t batch_size_{1};
  size_t channels_{1};
  size_t input_stride_{0};
  size_t output_stride_{0};
  size_t iterations_{15};
};