File size: 5,861 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

$assert ROW_TILE >= 1
$assert ACCUMULATORS >= 1
#include <assert.h>

#include <xnnpack/dwconv.h>
#include <xnnpack/math.h>


void xnn_f32_dwconv2d_chw_ukernel_3x3s2p1__scalar_${ROW_TILE}x1${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}(
    size_t input_height,
    size_t input_width,
    const float* input,
    const float* weights,
    const float* zero,
    float* output,
    uint32_t padding_top,
    const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)])
{
  assert(input_height != 0);
  assert(input_width != 0);
  assert(input_width % sizeof(float) == 0);
  assert(padding_top >= 0);
  assert(padding_top <= 1);

  const float vmin = params->scalar.min;
  const float vmax = params->scalar.max;

  const float vbias = weights[0];
  const float vk00 = weights[1];
  const float vk01 = weights[2];
  const float vk02 = weights[3];
  const float vk10 = weights[4];
  const float vk11 = weights[5];
  const float vk12 = weights[6];
  const float vk20 = weights[7];
  const float vk21 = weights[8];
  const float vk22 = weights[9];

  $if ROW_TILE > 1:
    const size_t output_width = round_down_po2((input_width + (2 /* padding */ - 3 /* kernel size */ + 2 /* subsampling */) * sizeof(float)) / 2, sizeof(float));

  const float* i0 = (const float*) ((uintptr_t) input - ((-padding_top) & input_width));
  const float* i1 = (const float*) ((uintptr_t) i0 + input_width);
  if XNN_UNPREDICTABLE(padding_top != 0) {
    i0 = zero;
  }
  $for M in range(2, 1 + 2 * ROW_TILE):
    const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);

  float* o0 = output;
  $for M in range(1, ROW_TILE):
    float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width);

  size_t padded_input_height = input_height + padding_top + 1 /* padding bottom */;
  size_t output_height = (padded_input_height - 3 /* kernel size */ + 2 /* subsampling */) / 2;
  do {
    $for M in range(2, 1 + 2 * ROW_TILE):
      if XNN_UNPREDICTABLE(padded_input_height < ${2 + M}) {
        i${M} = zero;
        $if M % 2 == 1:
          o${(M - 1) // 2} = o${(M - 1) // 2 - 1};
      }

    $for M in range(1 + 2 * ROW_TILE):
      float vi${M}x0 = 0.0f;

    size_t w = input_width;
    for (; w >= 2 * sizeof(float); w -= 2 * sizeof(float)) {
      $for M in range(1 + 2 * ROW_TILE):
        const float vi${M}x1 = i${M}[0];

      $for K in range(3):
        $for M in range(ROW_TILE):
          $if K == 0:
            float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0;
          $elif K < ACCUMULATORS:
            float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0;
          $else:
            vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0;

      $for M in range(1 + 2 * ROW_TILE):
        const float vi${M}x2 = i${M}[1];
        i${M} += 2;

      $for K in range(3):
        $for M in range(ROW_TILE):
          $if K + 3 < ACCUMULATORS:
            float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1;
          $else:
            vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1;

      $for M in range(1 + 2 * ROW_TILE):
        vi${M}x0 = vi${M}x2;

      $for K in range(3):
        $for M in range(ROW_TILE):
          vo${M}p${(K+6) % ACCUMULATORS} += vi${2*M+K}x2 * vk${K}2;

      $if ACCUMULATORS > 1:
        $ACC_SLICE = 1
        $while ACC_SLICE < ACCUMULATORS:
          $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
            $if A + ACC_SLICE < ACCUMULATORS:
              $for M in range(ROW_TILE):
                vo${M}p${A} += vo${M}p${A + ACC_SLICE};
          $ACC_SLICE *= 2

      $for M in range(ROW_TILE):
        float vo${M} = math_max_f32(vo${M}p0, vmin);

      $for M in range(ROW_TILE):
        vo${M} = math_min_f32(vo${M}, vmax);

      $for M in reversed(range(ROW_TILE)):
        *o${M}++ = vo${M};
    }
    // Potentially process the last pixel.
    assert(w <= 1 * sizeof(float));
    if (w != 0) {
      $for M in range(1 + 2 * ROW_TILE):
        const float vi${M}x1 = *i${M}++;

      $for K in range(3):
        $for M in range(ROW_TILE):
          $if K == 0:
            float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0;
          $elif K < ACCUMULATORS:
            float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0;
          $else:
            vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0;

      $for K in range(3):
        $for M in range(ROW_TILE):
          $if K + 3 < ACCUMULATORS:
            float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1;
          $else:
            vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1;

      $if ACCUMULATORS > 1:
        $ACC_SLICE = 1
        $while ACC_SLICE < ACCUMULATORS:
          $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
            $if A + ACC_SLICE < ACCUMULATORS:
              $for M in range(ROW_TILE):
                vo${M}p${A} += vo${M}p${A + ACC_SLICE};
          $ACC_SLICE *= 2

      $for M in range(ROW_TILE):
        float vo${M} = math_max_f32(vo${M}p0, vmin);

      $for M in range(ROW_TILE):
        vo${M} = math_min_f32(vo${M}, vmax);

      $for M in reversed(range(ROW_TILE)):
        *o${M}++ = vo${M};
    }

    i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE - 1});
    i1 = (const float*) ((uintptr_t) i${2 * ROW_TILE});
    $for M in range(2, 1 + 2 * ROW_TILE):
      i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);

    $if ROW_TILE > 1:
      o0 = o${ROW_TILE - 1};
      $for M in range(1, ROW_TILE):
        o${M} = (float*) ((uintptr_t) o${M-1} + output_width);

    $if ROW_TILE > 1:
      output_height = doz(output_height, ${ROW_TILE});
      padded_input_height = doz(padded_input_height, ${ROW_TILE * 2});
    $else:
      output_height -= 1;
      padded_input_height -= 2;
  } while (output_height != 0);
}