File size: 6,738 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <random>
#include <vector>

#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/gemm.h"
#include "bench/utils.h"

#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/gemm.h>
#include <xnnpack/math.h>
#include <xnnpack/pack.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>


static void f16_gemm(benchmark::State& state,
  xnn_f16_gemm_minmax_ukernel_fn gemm,
  size_t mr, size_t nr, size_t kr, size_t sr,
  xnn_init_f16_minmax_params_fn init_params,
  benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
  if (isa_check != nullptr && !isa_check(state)) {
    return;
  }

  const size_t mc = state.range(0);
  const size_t nc = state.range(1);
  const size_t kc = state.range(2);

  const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
  const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr);

  std::random_device random_device;
  auto rng = std::mt19937(random_device());
  auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
  auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);

  std::vector<uint16_t> a(mc * kc + XNN_EXTRA_BYTES / sizeof(uint16_t));
  std::generate(a.begin(), a.end(), std::ref(f16rng));
  std::vector<uint16_t> k(nc * kc);
  std::generate(k.begin(), k.end(), std::ref(f16rng));
  std::vector<uint16_t> b(nc);
  std::generate(b.begin(), b.end(), std::ref(f16rng));

  const size_t w_elements = nc_stride * kc_stride + nc_stride;
  const size_t c_elements = mc * nc;
  const size_t num_buffers = 1 +
    benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
      sizeof(uint16_t) * (w_elements + c_elements));

  std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> w(w_elements * num_buffers);
  std::fill(w.begin(), w.end(), 0);
  xnn_pack_f16_gemm_goi_w(1 /* groups */, nc, kc, nr, kr, sr, k.data(), b.data(), w.data(), 0, nullptr);
  std::vector<uint16_t> c(c_elements * num_buffers);
  std::fill(c.begin(), c.end(), UINT16_C(0x7E00) /* NaN */);

  // Prepare minmax parameters.
  xnn_f16_minmax_params params;
  init_params(&params,
    UINT16_C(0xFC00)  /* -inf */, UINT16_C(0x7C00)  /* inf */);

  size_t buffer_index = 0;
  for (auto _ : state) {
    // Use circular buffers (exceeding cache size) and prefetch to control cache state:
    // - A is always in L1 cache (if fits, otherwise L2, L3, etc)
    // - W is not in cache (for any cache level)
    // - C is not in cache (for any cache level)
    state.PauseTiming();
    benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t));
    buffer_index = (buffer_index + 1) % num_buffers;
    state.ResumeTiming();

    for (uint32_t m = 0; m < mc; m += mr) {
      const uint32_t mb = min(mc - m, mr);
      for (uint32_t n = 0; n < nc; n += nr) {
        const uint32_t nb = min(nc - n, nr);
        gemm(
          mb, nb, kc * sizeof(uint16_t),
          a.data() + m * kc, kc * sizeof(uint16_t),
          w.data() + (nc_stride * buffer_index + n) * (kc_stride + 1),
          c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(uint16_t), nr * sizeof(uint16_t),
          &params);
      }
    }
  }

  const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
  if (cpu_frequency != 0) {
    state.counters["cpufreq"] = cpu_frequency;
  }

  state.counters["FLOPS"] = benchmark::Counter(
    uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}

#if XNN_ARCH_X86 || XNN_ARCH_X86_64
  static void f16_f32acc_gemm_1x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_gemm(state, xnn_f16_f32acc_gemm_minmax_ukernel_1x8__avx2_broadcast, 1, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_gemm_4x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_gemm(state, xnn_f16_f32acc_gemm_minmax_ukernel_4x8__avx2_broadcast, 4, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_gemm_5x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_gemm(state, xnn_f16_f32acc_gemm_minmax_ukernel_5x8__avx2_broadcast, 5, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_gemm_6x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_gemm(state, xnn_f16_f32acc_gemm_minmax_ukernel_6x8__avx2_broadcast, 6, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_gemm_7x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_gemm(state, xnn_f16_f32acc_gemm_minmax_ukernel_7x8__avx2_broadcast, 7, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_gemm_1x16__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_gemm(state, xnn_f16_f32acc_gemm_minmax_ukernel_1x16__avx2_broadcast, 1, 16, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_gemm_3x16__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_gemm(state, xnn_f16_f32acc_gemm_minmax_ukernel_3x16__avx2_broadcast, 3, 16, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_gemm_4x16__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_gemm(state, xnn_f16_f32acc_gemm_minmax_ukernel_4x16__avx2_broadcast, 4, 16, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_gemm_5x16__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_gemm(state, xnn_f16_f32acc_gemm_minmax_ukernel_5x16__avx2_broadcast, 5, 16, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }

  BENCHMARK_GEMM(f16_f32acc_gemm_1x8__avx2_broadcast)
  BENCHMARK_GEMM(f16_f32acc_gemm_4x8__avx2_broadcast)
  BENCHMARK_GEMM(f16_f32acc_gemm_5x8__avx2_broadcast)
  BENCHMARK_GEMM(f16_f32acc_gemm_6x8__avx2_broadcast)
  BENCHMARK_GEMM(f16_f32acc_gemm_7x8__avx2_broadcast)
  BENCHMARK_GEMM(f16_f32acc_gemm_1x16__avx2_broadcast)
  BENCHMARK_GEMM(f16_f32acc_gemm_3x16__avx2_broadcast)
  BENCHMARK_GEMM(f16_f32acc_gemm_4x16__avx2_broadcast)
  BENCHMARK_GEMM(f16_f32acc_gemm_5x16__avx2_broadcast)
#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64

#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif