File size: 24,080 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

#include <cpuinfo.h>
#include <x86/api.h>
#include <x86/linux/api.h>
#include <linux/api.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>


static inline uint32_t bit_mask(uint32_t bits) {
	return (UINT32_C(1) << bits) - UINT32_C(1);
}

static inline bool bitmask_all(uint32_t bitfield, uint32_t mask) {
	return (bitfield & mask) == mask;
}

static inline uint32_t min(uint32_t a, uint32_t b) {
	return a < b ? a : b;
}

static inline int cmp(uint32_t a, uint32_t b) {
	return (a > b) - (a < b);
}

static int cmp_x86_linux_processor(const void* ptr_a, const void* ptr_b) {
	const struct cpuinfo_x86_linux_processor* processor_a = (const struct cpuinfo_x86_linux_processor*) ptr_a;
	const struct cpuinfo_x86_linux_processor* processor_b = (const struct cpuinfo_x86_linux_processor*) ptr_b;

	/* Move usable processors towards the start of the array */
	const bool usable_a = bitmask_all(processor_a->flags, CPUINFO_LINUX_FLAG_VALID);
	const bool usable_b = bitmask_all(processor_b->flags, CPUINFO_LINUX_FLAG_VALID);
	if (usable_a != usable_b) {
		return (int) usable_b - (int) usable_a;
	}

	/* Compare based on APIC ID (i.e. processor 0 < processor 1) */
	const uint32_t id_a = processor_a->apic_id;
	const uint32_t id_b = processor_b->apic_id;
	return cmp(id_a, id_b);
}

static void cpuinfo_x86_count_objects(
	uint32_t linux_processors_count,
	const struct cpuinfo_x86_linux_processor linux_processors[restrict static linux_processors_count],
	const struct cpuinfo_x86_processor processor[restrict static 1],
	uint32_t valid_processor_mask,
	uint32_t llc_apic_bits,
	uint32_t cores_count_ptr[restrict static 1],
	uint32_t clusters_count_ptr[restrict static 1],
	uint32_t packages_count_ptr[restrict static 1],
	uint32_t l1i_count_ptr[restrict static 1],
	uint32_t l1d_count_ptr[restrict static 1],
	uint32_t l2_count_ptr[restrict static 1],
	uint32_t l3_count_ptr[restrict static 1],
	uint32_t l4_count_ptr[restrict static 1])
{
	const uint32_t core_apic_mask =
		~(bit_mask(processor->topology.thread_bits_length) << processor->topology.thread_bits_offset);
	const uint32_t package_apic_mask =
		core_apic_mask & ~(bit_mask(processor->topology.core_bits_length) << processor->topology.core_bits_offset);
	const uint32_t llc_apic_mask = ~bit_mask(llc_apic_bits);
	const uint32_t cluster_apic_mask = package_apic_mask | llc_apic_mask;

	uint32_t cores_count = 0, clusters_count = 0, packages_count = 0;
	uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0;
	uint32_t last_core_id = UINT32_MAX, last_cluster_id = UINT32_MAX, last_package_id = UINT32_MAX;
	uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
	uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
	for (uint32_t i = 0; i < linux_processors_count; i++) {
		if (bitmask_all(linux_processors[i].flags, valid_processor_mask)) {
			const uint32_t apic_id = linux_processors[i].apic_id;
			cpuinfo_log_debug("APID ID %"PRIu32": system processor %"PRIu32, apic_id, linux_processors[i].linux_id);

			/* All bits of APIC ID except thread ID mask */
			const uint32_t core_id = apic_id & core_apic_mask;
			if (core_id != last_core_id) {
				last_core_id = core_id;
				cores_count++;
			}
			/* All bits of APIC ID except thread ID and core ID masks */
			const uint32_t package_id = apic_id & package_apic_mask;
			if (package_id != last_package_id) {
				last_package_id = package_id;
				packages_count++;
			}
			/* Bits of APIC ID which are part of either LLC or package ID mask */
			const uint32_t cluster_id = apic_id & cluster_apic_mask;
			if (cluster_id != last_cluster_id) {
				last_cluster_id = cluster_id;
				clusters_count++;
			}
			if (processor->cache.l1i.size != 0) {
				const uint32_t l1i_id = apic_id & ~bit_mask(processor->cache.l1i.apic_bits);
				if (l1i_id != last_l1i_id) {
					last_l1i_id = l1i_id;
					l1i_count++;
				}
			}
			if (processor->cache.l1d.size != 0) {
				const uint32_t l1d_id = apic_id & ~bit_mask(processor->cache.l1d.apic_bits);
				if (l1d_id != last_l1d_id) {
					last_l1d_id = l1d_id;
					l1d_count++;
				}
			}
			if (processor->cache.l2.size != 0) {
				const uint32_t l2_id = apic_id & ~bit_mask(processor->cache.l2.apic_bits);
				if (l2_id != last_l2_id) {
					last_l2_id = l2_id;
					l2_count++;
				}
			}
			if (processor->cache.l3.size != 0) {
				const uint32_t l3_id = apic_id & ~bit_mask(processor->cache.l3.apic_bits);
				if (l3_id != last_l3_id) {
					last_l3_id = l3_id;
					l3_count++;
				}
			}
			if (processor->cache.l4.size != 0) {
				const uint32_t l4_id = apic_id & ~bit_mask(processor->cache.l4.apic_bits);
				if (l4_id != last_l4_id) {
					last_l4_id = l4_id;
					l4_count++;
				}
			}
		}
	}
	*cores_count_ptr = cores_count;
	*clusters_count_ptr = clusters_count;
	*packages_count_ptr = packages_count;
	*l1i_count_ptr = l1i_count;
	*l1d_count_ptr = l1d_count;
	*l2_count_ptr  = l2_count;
	*l3_count_ptr  = l3_count;
	*l4_count_ptr  = l4_count;
}

void cpuinfo_x86_linux_init(void) {
	struct cpuinfo_x86_linux_processor* x86_linux_processors = NULL;
	struct cpuinfo_processor* processors = NULL;
	struct cpuinfo_core* cores = NULL;
	struct cpuinfo_cluster* clusters = NULL;
	struct cpuinfo_package* packages = NULL;
	const struct cpuinfo_processor** linux_cpu_to_processor_map = NULL;
	const struct cpuinfo_core** linux_cpu_to_core_map = NULL;
	struct cpuinfo_cache* l1i = NULL;
	struct cpuinfo_cache* l1d = NULL;
	struct cpuinfo_cache* l2 = NULL;
	struct cpuinfo_cache* l3 = NULL;
	struct cpuinfo_cache* l4 = NULL;

	const uint32_t max_processors_count = cpuinfo_linux_get_max_processors_count();
	cpuinfo_log_debug("system maximum processors count: %"PRIu32, max_processors_count);

	const uint32_t max_possible_processors_count = 1 +
		cpuinfo_linux_get_max_possible_processor(max_processors_count);
	cpuinfo_log_debug("maximum possible processors count: %"PRIu32, max_possible_processors_count);
	const uint32_t max_present_processors_count = 1 +
		cpuinfo_linux_get_max_present_processor(max_processors_count);
	cpuinfo_log_debug("maximum present processors count: %"PRIu32, max_present_processors_count);

	uint32_t valid_processor_mask = 0;
	uint32_t x86_linux_processors_count = max_processors_count;
	if (max_present_processors_count != 0) {
		x86_linux_processors_count = min(x86_linux_processors_count, max_present_processors_count);
		valid_processor_mask = CPUINFO_LINUX_FLAG_PRESENT;
	} else {
		valid_processor_mask = CPUINFO_LINUX_FLAG_PROC_CPUINFO;
	}
	if (max_possible_processors_count != 0) {
		x86_linux_processors_count = min(x86_linux_processors_count, max_possible_processors_count);
		valid_processor_mask |= CPUINFO_LINUX_FLAG_POSSIBLE;
	}

	x86_linux_processors = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_x86_linux_processor));
	if (x86_linux_processors == NULL) {
		cpuinfo_log_error(
			"failed to allocate %zu bytes for descriptions of %"PRIu32" x86 logical processors",
			x86_linux_processors_count * sizeof(struct cpuinfo_x86_linux_processor),
			x86_linux_processors_count);
		return;
	}

	if (max_possible_processors_count != 0) {
		cpuinfo_linux_detect_possible_processors(
			x86_linux_processors_count, &x86_linux_processors->flags,
			sizeof(struct cpuinfo_x86_linux_processor),
			CPUINFO_LINUX_FLAG_POSSIBLE);
	}

	if (max_present_processors_count != 0) {
		cpuinfo_linux_detect_present_processors(
			x86_linux_processors_count, &x86_linux_processors->flags,
			sizeof(struct cpuinfo_x86_linux_processor),
			CPUINFO_LINUX_FLAG_PRESENT);
	}

	if (!cpuinfo_x86_linux_parse_proc_cpuinfo(x86_linux_processors_count, x86_linux_processors)) {
		cpuinfo_log_error("failed to parse processor information from /proc/cpuinfo");
		return;
	}

	for (uint32_t i = 0; i < x86_linux_processors_count; i++) {
		if (bitmask_all(x86_linux_processors[i].flags, valid_processor_mask)) {
			x86_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_VALID;
		}
	}

	struct cpuinfo_x86_processor x86_processor;
	memset(&x86_processor, 0, sizeof(x86_processor));
	cpuinfo_x86_init_processor(&x86_processor);
	char brand_string[48];
	cpuinfo_x86_normalize_brand_string(x86_processor.brand_string, brand_string);

	uint32_t processors_count = 0;
	for (uint32_t i = 0; i < x86_linux_processors_count; i++) {
		if (bitmask_all(x86_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			x86_linux_processors[i].linux_id = i;
			processors_count++;
		}
	}

	qsort(x86_linux_processors, x86_linux_processors_count, sizeof(struct cpuinfo_x86_linux_processor),
		cmp_x86_linux_processor);

	processors = calloc(processors_count, sizeof(struct cpuinfo_processor));
	if (processors == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
			processors_count * sizeof(struct cpuinfo_processor), processors_count);
		goto cleanup;
	}

	uint32_t llc_apic_bits = 0;
	if (x86_processor.cache.l4.size != 0) {
		llc_apic_bits = x86_processor.cache.l4.apic_bits;
	} else if (x86_processor.cache.l3.size != 0) {
		llc_apic_bits = x86_processor.cache.l3.apic_bits;
	} else if (x86_processor.cache.l2.size != 0) {
		llc_apic_bits = x86_processor.cache.l2.apic_bits;
	} else if (x86_processor.cache.l1d.size != 0) {
		llc_apic_bits = x86_processor.cache.l1d.apic_bits;
	}
	uint32_t packages_count = 0, clusters_count = 0, cores_count = 0;
	uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0;
	cpuinfo_x86_count_objects(
		x86_linux_processors_count, x86_linux_processors, &x86_processor, valid_processor_mask, llc_apic_bits,
		&cores_count, &clusters_count, &packages_count, &l1i_count, &l1d_count, &l2_count, &l3_count, &l4_count);

	cpuinfo_log_debug("detected %"PRIu32" cores", cores_count);
	cpuinfo_log_debug("detected %"PRIu32" clusters", clusters_count);
	cpuinfo_log_debug("detected %"PRIu32" packages", packages_count);
	cpuinfo_log_debug("detected %"PRIu32" L1I caches", l1i_count);
	cpuinfo_log_debug("detected %"PRIu32" L1D caches", l1d_count);
	cpuinfo_log_debug("detected %"PRIu32" L2 caches", l2_count);
	cpuinfo_log_debug("detected %"PRIu32" L3 caches", l3_count);
	cpuinfo_log_debug("detected %"PRIu32" L4 caches", l4_count);

	linux_cpu_to_processor_map = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_processor*));
	if (linux_cpu_to_processor_map == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for mapping entries of %"PRIu32" logical processors",
			x86_linux_processors_count * sizeof(struct cpuinfo_processor*),
			x86_linux_processors_count);
		goto cleanup;
	}

	linux_cpu_to_core_map = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_core*));
	if (linux_cpu_to_core_map == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for mapping entries of %"PRIu32" cores",
			x86_linux_processors_count * sizeof(struct cpuinfo_core*),
			x86_linux_processors_count);
		goto cleanup;
	}

	cores = calloc(cores_count, sizeof(struct cpuinfo_core));
	if (cores == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
			cores_count * sizeof(struct cpuinfo_core), cores_count);
		goto cleanup;
	}

	clusters = calloc(clusters_count, sizeof(struct cpuinfo_cluster));
	if (clusters == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
			clusters_count * sizeof(struct cpuinfo_cluster), clusters_count);
		goto cleanup;
	}

	packages = calloc(packages_count, sizeof(struct cpuinfo_package));
	if (packages == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages",
			packages_count * sizeof(struct cpuinfo_package), packages_count);
		goto cleanup;
	}

	if (l1i_count != 0) {
		l1i = calloc(l1i_count, sizeof(struct cpuinfo_cache));
		if (l1i == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1I caches",
				l1i_count * sizeof(struct cpuinfo_cache), l1i_count);
			goto cleanup;
		}
	}
	if (l1d_count != 0) {
		l1d = calloc(l1d_count, sizeof(struct cpuinfo_cache));
		if (l1d == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1D caches",
				l1d_count * sizeof(struct cpuinfo_cache), l1d_count);
			goto cleanup;
		}
	}
	if (l2_count != 0) {
		l2 = calloc(l2_count, sizeof(struct cpuinfo_cache));
		if (l2 == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L2 caches",
				l2_count * sizeof(struct cpuinfo_cache), l2_count);
			goto cleanup;
		}
	}
	if (l3_count != 0) {
		l3 = calloc(l3_count, sizeof(struct cpuinfo_cache));
		if (l3 == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L3 caches",
				l3_count * sizeof(struct cpuinfo_cache), l3_count);
			goto cleanup;
		}
	}
	if (l4_count != 0) {
		l4 = calloc(l4_count, sizeof(struct cpuinfo_cache));
		if (l4 == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L4 caches",
				l4_count * sizeof(struct cpuinfo_cache), l4_count);
			goto cleanup;
		}
	}

	const uint32_t core_apic_mask =
		~(bit_mask(x86_processor.topology.thread_bits_length) << x86_processor.topology.thread_bits_offset);
	const uint32_t package_apic_mask =
		core_apic_mask & ~(bit_mask(x86_processor.topology.core_bits_length) << x86_processor.topology.core_bits_offset);
	const uint32_t llc_apic_mask = ~bit_mask(llc_apic_bits);
	const uint32_t cluster_apic_mask = package_apic_mask | llc_apic_mask;

	uint32_t processor_index = UINT32_MAX, core_index = UINT32_MAX, cluster_index = UINT32_MAX, package_index = UINT32_MAX;
	uint32_t l1i_index = UINT32_MAX, l1d_index = UINT32_MAX, l2_index = UINT32_MAX, l3_index = UINT32_MAX, l4_index = UINT32_MAX;
	uint32_t cluster_id = 0, core_id = 0, smt_id = 0;
	uint32_t last_apic_core_id = UINT32_MAX, last_apic_cluster_id = UINT32_MAX, last_apic_package_id = UINT32_MAX;
	uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
	uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
	for (uint32_t i = 0; i < x86_linux_processors_count; i++) {
		if (bitmask_all(x86_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			const uint32_t apic_id = x86_linux_processors[i].apic_id;
			processor_index++;
			smt_id++;

			/* All bits of APIC ID except thread ID mask */
			const uint32_t apid_core_id = apic_id & core_apic_mask;
			if (apid_core_id != last_apic_core_id) {
				core_index++;
				core_id++;
				smt_id = 0;
			}
			/* Bits of APIC ID which are part of either LLC or package ID mask */
			const uint32_t apic_cluster_id = apic_id & cluster_apic_mask;
			if (apic_cluster_id != last_apic_cluster_id) {
				cluster_index++;
				cluster_id++;
			}
			/* All bits of APIC ID except thread ID and core ID masks */
			const uint32_t apic_package_id = apic_id & package_apic_mask;
			if (apic_package_id != last_apic_package_id) {
				package_index++;
				core_id = 0;
				cluster_id = 0;
			}

			/* Initialize logical processor object */
			processors[processor_index].smt_id   = smt_id;
			processors[processor_index].core     = cores + core_index;
			processors[processor_index].cluster  = clusters + cluster_index;
			processors[processor_index].package  = packages + package_index;
			processors[processor_index].linux_id = x86_linux_processors[i].linux_id;
			processors[processor_index].apic_id  = x86_linux_processors[i].apic_id;

			if (apid_core_id != last_apic_core_id) {
				/* new core */
				cores[core_index] = (struct cpuinfo_core) {
					.processor_start = processor_index,
					.processor_count = 1,
					.core_id = core_id,
					.cluster = clusters + cluster_index,
					.package = packages + package_index,
					.vendor = x86_processor.vendor,
					.uarch = x86_processor.uarch,
					.cpuid = x86_processor.cpuid,
				};
				clusters[cluster_index].core_count += 1;
				packages[package_index].core_count += 1;
				last_apic_core_id = apid_core_id;
			} else {
				/* another logical processor on the same core */
				cores[core_index].processor_count++;
			}

			if (apic_cluster_id != last_apic_cluster_id) {
				/* new cluster */
				clusters[cluster_index].processor_start = processor_index;
				clusters[cluster_index].processor_count = 1;
				clusters[cluster_index].core_start = core_index;
				clusters[cluster_index].cluster_id = cluster_id;
				clusters[cluster_index].package = packages + package_index;
				clusters[cluster_index].vendor = x86_processor.vendor;
				clusters[cluster_index].uarch = x86_processor.uarch;
				clusters[cluster_index].cpuid = x86_processor.cpuid;
				packages[package_index].cluster_count += 1;
				last_apic_cluster_id = apic_cluster_id;
			} else {
				/* another logical processor on the same cluster */
				clusters[cluster_index].processor_count++;
			}

			if (apic_package_id != last_apic_package_id) {
				/* new package */
				packages[package_index].processor_start = processor_index;
				packages[package_index].processor_count = 1;
				packages[package_index].core_start = core_index;
				packages[package_index].cluster_start = cluster_index;
				cpuinfo_x86_format_package_name(x86_processor.vendor, brand_string, packages[package_index].name);
				last_apic_package_id = apic_package_id;
			} else {
				/* another logical processor on the same package */
				packages[package_index].processor_count++;
			}

			linux_cpu_to_processor_map[x86_linux_processors[i].linux_id] = processors + processor_index;
			linux_cpu_to_core_map[x86_linux_processors[i].linux_id] = cores + core_index;

			if (x86_processor.cache.l1i.size != 0) {
				const uint32_t l1i_id = apic_id & ~bit_mask(x86_processor.cache.l1i.apic_bits);
				processors[i].cache.l1i = &l1i[l1i_index];
				if (l1i_id != last_l1i_id) {
					/* new cache */
					last_l1i_id = l1i_id;
					l1i[++l1i_index] = (struct cpuinfo_cache) {
						.size            = x86_processor.cache.l1i.size,
						.associativity   = x86_processor.cache.l1i.associativity,
						.sets            = x86_processor.cache.l1i.sets,
						.partitions      = x86_processor.cache.l1i.partitions,
						.line_size       = x86_processor.cache.l1i.line_size,
						.flags           = x86_processor.cache.l1i.flags,
						.processor_start = processor_index,
						.processor_count = 1,
					};
				} else {
					/* another processor sharing the same cache */
					l1i[l1i_index].processor_count += 1;
				}
				processors[i].cache.l1i = &l1i[l1i_index];
			} else {
				/* reset cache id */
				last_l1i_id = UINT32_MAX;
			}
			if (x86_processor.cache.l1d.size != 0) {
				const uint32_t l1d_id = apic_id & ~bit_mask(x86_processor.cache.l1d.apic_bits);
				processors[i].cache.l1d = &l1d[l1d_index];
				if (l1d_id != last_l1d_id) {
					/* new cache */
					last_l1d_id = l1d_id;
					l1d[++l1d_index] = (struct cpuinfo_cache) {
						.size            = x86_processor.cache.l1d.size,
						.associativity   = x86_processor.cache.l1d.associativity,
						.sets            = x86_processor.cache.l1d.sets,
						.partitions      = x86_processor.cache.l1d.partitions,
						.line_size       = x86_processor.cache.l1d.line_size,
						.flags           = x86_processor.cache.l1d.flags,
						.processor_start = processor_index,
						.processor_count = 1,
					};
				} else {
					/* another processor sharing the same cache */
					l1d[l1d_index].processor_count += 1;
				}
				processors[i].cache.l1d = &l1d[l1d_index];
			} else {
				/* reset cache id */
				last_l1d_id = UINT32_MAX;
			}
			if (x86_processor.cache.l2.size != 0) {
				const uint32_t l2_id = apic_id & ~bit_mask(x86_processor.cache.l2.apic_bits);
				processors[i].cache.l2 = &l2[l2_index];
				if (l2_id != last_l2_id) {
					/* new cache */
					last_l2_id = l2_id;
					l2[++l2_index] = (struct cpuinfo_cache) {
						.size            = x86_processor.cache.l2.size,
						.associativity   = x86_processor.cache.l2.associativity,
						.sets            = x86_processor.cache.l2.sets,
						.partitions      = x86_processor.cache.l2.partitions,
						.line_size       = x86_processor.cache.l2.line_size,
						.flags           = x86_processor.cache.l2.flags,
						.processor_start = processor_index,
						.processor_count = 1,
					};
				} else {
					/* another processor sharing the same cache */
					l2[l2_index].processor_count += 1;
				}
				processors[i].cache.l2 = &l2[l2_index];
			} else {
				/* reset cache id */
				last_l2_id = UINT32_MAX;
			}
			if (x86_processor.cache.l3.size != 0) {
				const uint32_t l3_id = apic_id & ~bit_mask(x86_processor.cache.l3.apic_bits);
				processors[i].cache.l3 = &l3[l3_index];
				if (l3_id != last_l3_id) {
					/* new cache */
					last_l3_id = l3_id;
					l3[++l3_index] = (struct cpuinfo_cache) {
						.size            = x86_processor.cache.l3.size,
						.associativity   = x86_processor.cache.l3.associativity,
						.sets            = x86_processor.cache.l3.sets,
						.partitions      = x86_processor.cache.l3.partitions,
						.line_size       = x86_processor.cache.l3.line_size,
						.flags           = x86_processor.cache.l3.flags,
						.processor_start = processor_index,
						.processor_count = 1,
					};
				} else {
					/* another processor sharing the same cache */
					l3[l3_index].processor_count += 1;
				}
				processors[i].cache.l3 = &l3[l3_index];
			} else {
				/* reset cache id */
				last_l3_id = UINT32_MAX;
			}
			if (x86_processor.cache.l4.size != 0) {
				const uint32_t l4_id = apic_id & ~bit_mask(x86_processor.cache.l4.apic_bits);
				processors[i].cache.l4 = &l4[l4_index];
				if (l4_id != last_l4_id) {
					/* new cache */
					last_l4_id = l4_id;
					l4[++l4_index] = (struct cpuinfo_cache) {
						.size            = x86_processor.cache.l4.size,
						.associativity   = x86_processor.cache.l4.associativity,
						.sets            = x86_processor.cache.l4.sets,
						.partitions      = x86_processor.cache.l4.partitions,
						.line_size       = x86_processor.cache.l4.line_size,
						.flags           = x86_processor.cache.l4.flags,
						.processor_start = processor_index,
						.processor_count = 1,
					};
				} else {
					/* another processor sharing the same cache */
					l4[l4_index].processor_count += 1;
				}
				processors[i].cache.l4 = &l4[l4_index];
			} else {
				/* reset cache id */
				last_l4_id = UINT32_MAX;
			}
		}
	}

	/* Commit changes */
	cpuinfo_processors = processors;
	cpuinfo_cores = cores;
	cpuinfo_clusters = clusters;
	cpuinfo_packages = packages;
	cpuinfo_cache[cpuinfo_cache_level_1i] = l1i;
	cpuinfo_cache[cpuinfo_cache_level_1d] = l1d;
	cpuinfo_cache[cpuinfo_cache_level_2]  = l2;
	cpuinfo_cache[cpuinfo_cache_level_3]  = l3;
	cpuinfo_cache[cpuinfo_cache_level_4]  = l4;

	cpuinfo_processors_count = processors_count;
	cpuinfo_cores_count = cores_count;
	cpuinfo_clusters_count = clusters_count;
	cpuinfo_packages_count = packages_count;
	cpuinfo_cache_count[cpuinfo_cache_level_1i] = l1i_count;
	cpuinfo_cache_count[cpuinfo_cache_level_1d] = l1d_count;
	cpuinfo_cache_count[cpuinfo_cache_level_2]  = l2_count;
	cpuinfo_cache_count[cpuinfo_cache_level_3]  = l3_count;
	cpuinfo_cache_count[cpuinfo_cache_level_4]  = l4_count;
	cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]);

	cpuinfo_global_uarch = (struct cpuinfo_uarch_info) {
		.uarch = x86_processor.uarch,
		.cpuid = x86_processor.cpuid,
		.processor_count = processors_count,
		.core_count = cores_count,
	};

	cpuinfo_linux_cpu_max = x86_linux_processors_count;
	cpuinfo_linux_cpu_to_processor_map = linux_cpu_to_processor_map;
	cpuinfo_linux_cpu_to_core_map = linux_cpu_to_core_map;

	__sync_synchronize();

	cpuinfo_is_initialized = true;

	processors = NULL;
	cores = NULL;
	clusters = NULL;
	packages = NULL;
	l1i = l1d = l2 = l3 = l4 = NULL;
	linux_cpu_to_processor_map = NULL;
	linux_cpu_to_core_map = NULL;

cleanup:
	free(x86_linux_processors);
	free(processors);
	free(cores);
	free(clusters);
	free(packages);
	free(l1i);
	free(l1d);
	free(l2);
	free(l3);
	free(l4);
	free(linux_cpu_to_processor_map);
	free(linux_cpu_to_core_map);
}