File size: 15,786 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#if !defined(__ANDROID__)
	/*
	 * sched.h is only used for CPU_SETSIZE constant.
	 * Android NDK headers before platform 21 do have this constant in sched.h
	 */
	#include <sched.h>
#endif

#include <linux/api.h>
#include <cpuinfo/log.h>


#define STRINGIFY(token) #token

#define KERNEL_MAX_FILENAME "/sys/devices/system/cpu/kernel_max"
#define KERNEL_MAX_FILESIZE 32
#define FREQUENCY_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/cpufreq/cpuinfo_max_freq"))
#define MAX_FREQUENCY_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/cpufreq/cpuinfo_max_freq"
#define MIN_FREQUENCY_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/cpufreq/cpuinfo_min_freq"
#define FREQUENCY_FILESIZE 32
#define PACKAGE_ID_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/topology/physical_package_id"))
#define PACKAGE_ID_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/topology/physical_package_id"
#define PACKAGE_ID_FILESIZE 32
#define CORE_ID_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/topology/core_id"))
#define CORE_ID_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/topology/core_id"
#define CORE_ID_FILESIZE 32

#define CORE_SIBLINGS_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/topology/core_siblings_list"))
#define CORE_SIBLINGS_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/topology/core_siblings_list"
#define THREAD_SIBLINGS_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/topology/thread_siblings_list"))
#define THREAD_SIBLINGS_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/topology/thread_siblings_list"

#define POSSIBLE_CPULIST_FILENAME "/sys/devices/system/cpu/possible"
#define PRESENT_CPULIST_FILENAME "/sys/devices/system/cpu/present"


inline static const char* parse_number(const char* start, const char* end, uint32_t number_ptr[restrict static 1]) {
	uint32_t number = 0;
	const char* parsed = start;
	for (; parsed != end; parsed++) {
		const uint32_t digit = (uint32_t) (uint8_t) (*parsed) - (uint32_t) '0';
		if (digit >= 10) {
			break;
		}
		number = number * UINT32_C(10) + digit;
	}
	*number_ptr = number;
	return parsed;
}

/* Locale-independent */
inline static bool is_whitespace(char c) {
	switch (c) {
		case ' ':
		case '\t':
		case '\n':
		case '\r':
			return true;
		default:
			return false;
	}
}

#if defined(__ANDROID__) && !defined(CPU_SETSIZE)
	/*
	 * Android NDK headers before platform 21 do not define CPU_SETSIZE,
	 * so we hard-code its value, as defined in platform 21 headers
	 */
	#if defined(__LP64__)
		static const uint32_t default_max_processors_count = 1024;
	#else
		static const uint32_t default_max_processors_count = 32;
	#endif
#else
	static const uint32_t default_max_processors_count = CPU_SETSIZE;
#endif

static bool uint32_parser(const char* text_start, const char* text_end, void* context) {
	if (text_start == text_end) {
		cpuinfo_log_error("failed to parse file %s: file is empty", KERNEL_MAX_FILENAME);
		return false;
	}

	uint32_t kernel_max = 0;
	const char* parsed_end = parse_number(text_start, text_end, &kernel_max);
	if (parsed_end == text_start) {
		cpuinfo_log_error("failed to parse file %s: \"%.*s\" is not an unsigned number",
			KERNEL_MAX_FILENAME, (int) (text_end - text_start), text_start);
		return false;
	} else {
		for (const char* char_ptr = parsed_end; char_ptr != text_end; char_ptr++) {
			if (!is_whitespace(*char_ptr)) {
				cpuinfo_log_warning("non-whitespace characters \"%.*s\" following number in file %s are ignored",
					(int) (text_end - char_ptr), char_ptr, KERNEL_MAX_FILENAME);
				break;
			}
		}
	}

	uint32_t* kernel_max_ptr = (uint32_t*) context;
	*kernel_max_ptr = kernel_max;
	return true;
}

uint32_t cpuinfo_linux_get_max_processors_count(void) {
	uint32_t kernel_max;
	if (cpuinfo_linux_parse_small_file(KERNEL_MAX_FILENAME, KERNEL_MAX_FILESIZE, uint32_parser, &kernel_max)) {
		cpuinfo_log_debug("parsed kernel_max value of %"PRIu32" from %s", kernel_max, KERNEL_MAX_FILENAME);

		if (kernel_max >= default_max_processors_count) {
			cpuinfo_log_warning("kernel_max value of %"PRIu32" parsed from %s exceeds platform-default limit %"PRIu32,
				kernel_max, KERNEL_MAX_FILENAME, default_max_processors_count - 1);
		}

		return kernel_max + 1;
	} else {
		cpuinfo_log_warning("using platform-default max processors count = %"PRIu32, default_max_processors_count);
		return default_max_processors_count;
	}
}

uint32_t cpuinfo_linux_get_processor_max_frequency(uint32_t processor) {
	char max_frequency_filename[FREQUENCY_FILENAME_SIZE];
	const int chars_formatted = snprintf(
		max_frequency_filename, FREQUENCY_FILENAME_SIZE, MAX_FREQUENCY_FILENAME_FORMAT, processor);
	if ((unsigned int) chars_formatted >= FREQUENCY_FILENAME_SIZE) {
		cpuinfo_log_warning("failed to format filename for max frequency of processor %"PRIu32, processor);
		return 0;
	}

	uint32_t max_frequency;
	if (cpuinfo_linux_parse_small_file(max_frequency_filename, FREQUENCY_FILESIZE, uint32_parser, &max_frequency)) {
		cpuinfo_log_debug("parsed max frequency value of %"PRIu32" KHz for logical processor %"PRIu32" from %s",
			max_frequency, processor, max_frequency_filename);
		return max_frequency;
	} else {
		cpuinfo_log_warning("failed to parse max frequency for processor %"PRIu32" from %s",
			processor, max_frequency_filename);
		return 0;
	}
}

uint32_t cpuinfo_linux_get_processor_min_frequency(uint32_t processor) {
	char min_frequency_filename[FREQUENCY_FILENAME_SIZE];
	const int chars_formatted = snprintf(
		min_frequency_filename, FREQUENCY_FILENAME_SIZE, MIN_FREQUENCY_FILENAME_FORMAT, processor);
	if ((unsigned int) chars_formatted >= FREQUENCY_FILENAME_SIZE) {
		cpuinfo_log_warning("failed to format filename for min frequency of processor %"PRIu32, processor);
		return 0;
	}

	uint32_t min_frequency;
	if (cpuinfo_linux_parse_small_file(min_frequency_filename, FREQUENCY_FILESIZE, uint32_parser, &min_frequency)) {
		cpuinfo_log_debug("parsed min frequency value of %"PRIu32" KHz for logical processor %"PRIu32" from %s",
			min_frequency, processor, min_frequency_filename);
		return min_frequency;
	} else {
		/*
		 * This error is less severe than parsing max frequency, because min frequency is only useful for clustering,
		 * while max frequency is also needed for peak FLOPS calculation.
		 */
		cpuinfo_log_info("failed to parse min frequency for processor %"PRIu32" from %s",
			processor, min_frequency_filename);
		return 0;
	}
}

bool cpuinfo_linux_get_processor_core_id(uint32_t processor, uint32_t core_id_ptr[restrict static 1]) {
	char core_id_filename[PACKAGE_ID_FILENAME_SIZE];
	const int chars_formatted = snprintf(
		core_id_filename, CORE_ID_FILENAME_SIZE, CORE_ID_FILENAME_FORMAT, processor);
	if ((unsigned int) chars_formatted >= CORE_ID_FILENAME_SIZE) {
		cpuinfo_log_warning("failed to format filename for core id of processor %"PRIu32, processor);
		return 0;
	}

	uint32_t core_id;
	if (cpuinfo_linux_parse_small_file(core_id_filename, CORE_ID_FILESIZE, uint32_parser, &core_id)) {
		cpuinfo_log_debug("parsed core id value of %"PRIu32" for logical processor %"PRIu32" from %s",
			core_id, processor, core_id_filename);
		*core_id_ptr = core_id;
		return true;
	} else {
		cpuinfo_log_info("failed to parse core id for processor %"PRIu32" from %s",
			processor, core_id_filename);
		return false;
	}
}

bool cpuinfo_linux_get_processor_package_id(uint32_t processor, uint32_t package_id_ptr[restrict static 1]) {
	char package_id_filename[PACKAGE_ID_FILENAME_SIZE];
	const int chars_formatted = snprintf(
		package_id_filename, PACKAGE_ID_FILENAME_SIZE, PACKAGE_ID_FILENAME_FORMAT, processor);
	if ((unsigned int) chars_formatted >= PACKAGE_ID_FILENAME_SIZE) {
		cpuinfo_log_warning("failed to format filename for package id of processor %"PRIu32, processor);
		return 0;
	}

	uint32_t package_id;
	if (cpuinfo_linux_parse_small_file(package_id_filename, PACKAGE_ID_FILESIZE, uint32_parser, &package_id)) {
		cpuinfo_log_debug("parsed package id value of %"PRIu32" for logical processor %"PRIu32" from %s",
			package_id, processor, package_id_filename);
		*package_id_ptr = package_id;
		return true;
	} else {
		cpuinfo_log_info("failed to parse package id for processor %"PRIu32" from %s",
			processor, package_id_filename);
		return false;
	}
}

static bool max_processor_number_parser(uint32_t processor_list_start, uint32_t processor_list_end, void* context) {
	uint32_t* processor_number_ptr = (uint32_t*) context;
	const uint32_t processor_list_last = processor_list_end - 1;
	if (*processor_number_ptr < processor_list_last) {
		*processor_number_ptr = processor_list_last;
	}
	return true;
}

uint32_t cpuinfo_linux_get_max_possible_processor(uint32_t max_processors_count) {
	uint32_t max_possible_processor = 0;
	if (!cpuinfo_linux_parse_cpulist(POSSIBLE_CPULIST_FILENAME, max_processor_number_parser, &max_possible_processor)) {
		#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
			cpuinfo_log_error("failed to parse the list of possible processors in %s", POSSIBLE_CPULIST_FILENAME);
		#else
			cpuinfo_log_warning("failed to parse the list of possible processors in %s", POSSIBLE_CPULIST_FILENAME);
		#endif
		return UINT32_MAX;
	}
	if (max_possible_processor >= max_processors_count) {
		cpuinfo_log_warning(
			"maximum possible processor number %"PRIu32" exceeds system limit %"PRIu32": truncating to the latter",
			max_possible_processor, max_processors_count - 1);
		max_possible_processor = max_processors_count - 1;
	}
	return max_possible_processor;
}

uint32_t cpuinfo_linux_get_max_present_processor(uint32_t max_processors_count) {
	uint32_t max_present_processor = 0;
	if (!cpuinfo_linux_parse_cpulist(PRESENT_CPULIST_FILENAME, max_processor_number_parser, &max_present_processor)) {
		#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
			cpuinfo_log_error("failed to parse the list of present processors in %s", PRESENT_CPULIST_FILENAME);
		#else
			cpuinfo_log_warning("failed to parse the list of present processors in %s", PRESENT_CPULIST_FILENAME);
		#endif
		return UINT32_MAX;
	}
	if (max_present_processor >= max_processors_count) {
		cpuinfo_log_warning(
			"maximum present processor number %"PRIu32" exceeds system limit %"PRIu32": truncating to the latter",
			max_present_processor, max_processors_count - 1);
		max_present_processor = max_processors_count - 1;
	}
	return max_present_processor;
}

struct detect_processors_context {
	uint32_t max_processors_count;
	uint32_t* processor0_flags;
	uint32_t processor_struct_size;
	uint32_t detected_flag;
};

static bool detect_processor_parser(uint32_t processor_list_start, uint32_t processor_list_end, void* context) {
	const uint32_t max_processors_count   = ((struct detect_processors_context*) context)->max_processors_count;
	const uint32_t* processor0_flags      = ((struct detect_processors_context*) context)->processor0_flags;
	const uint32_t processor_struct_size  = ((struct detect_processors_context*) context)->processor_struct_size;
	const uint32_t detected_flag          = ((struct detect_processors_context*) context)->detected_flag;

	for (uint32_t processor = processor_list_start; processor < processor_list_end; processor++) {
		if (processor >= max_processors_count) {
			break;
		}
		*((uint32_t*) ((uintptr_t) processor0_flags + processor_struct_size * processor)) |= detected_flag;
	}
	return true;
}

bool cpuinfo_linux_detect_possible_processors(uint32_t max_processors_count,
	uint32_t* processor0_flags, uint32_t processor_struct_size, uint32_t possible_flag)
{
	struct detect_processors_context context = {
		.max_processors_count = max_processors_count,
		.processor0_flags = processor0_flags,
		.processor_struct_size = processor_struct_size,
		.detected_flag = possible_flag,
	};
	if (cpuinfo_linux_parse_cpulist(POSSIBLE_CPULIST_FILENAME, detect_processor_parser, &context)) {
		return true;
	} else {
		cpuinfo_log_warning("failed to parse the list of possible processors in %s", POSSIBLE_CPULIST_FILENAME);
		return false;
	}
}

bool cpuinfo_linux_detect_present_processors(uint32_t max_processors_count,
	uint32_t* processor0_flags, uint32_t processor_struct_size, uint32_t present_flag)
{
	struct detect_processors_context context = {
		.max_processors_count = max_processors_count,
		.processor0_flags = processor0_flags,
		.processor_struct_size = processor_struct_size,
		.detected_flag = present_flag,
	};
	if (cpuinfo_linux_parse_cpulist(PRESENT_CPULIST_FILENAME, detect_processor_parser, &context)) {
		return true;
	} else {
		cpuinfo_log_warning("failed to parse the list of present processors in %s", PRESENT_CPULIST_FILENAME);
		return false;
	}
}

struct siblings_context {
	const char* group_name;
	uint32_t max_processors_count;
	uint32_t processor;
	cpuinfo_siblings_callback callback;
	void* callback_context;
};

static bool siblings_parser(uint32_t sibling_list_start, uint32_t sibling_list_end, struct siblings_context* context) {
	const char* group_name                   = context->group_name;
	const uint32_t max_processors_count      = context->max_processors_count;
	const uint32_t processor                 = context->processor;

	if (sibling_list_end > max_processors_count) {
		cpuinfo_log_warning("ignore %s siblings %"PRIu32"-%"PRIu32" of processor %"PRIu32,
			group_name, max_processors_count, sibling_list_end - 1, processor);
		sibling_list_end = max_processors_count;
	}

	return context->callback(processor, sibling_list_start, sibling_list_end, context->callback_context);
}

bool cpuinfo_linux_detect_core_siblings(
	uint32_t max_processors_count,
	uint32_t processor,
	cpuinfo_siblings_callback callback,
	void* context)
{
	char core_siblings_filename[CORE_SIBLINGS_FILENAME_SIZE];
	const int chars_formatted = snprintf(
		core_siblings_filename, CORE_SIBLINGS_FILENAME_SIZE, CORE_SIBLINGS_FILENAME_FORMAT, processor);
	if ((unsigned int) chars_formatted >= CORE_SIBLINGS_FILENAME_SIZE) {
		cpuinfo_log_warning("failed to format filename for core siblings of processor %"PRIu32, processor);
		return false;
	}

	struct siblings_context siblings_context = {
		.group_name = "package",
		.max_processors_count = max_processors_count,
		.processor = processor,
		.callback = callback,
		.callback_context = context,
	};
	if (cpuinfo_linux_parse_cpulist(core_siblings_filename,
		(cpuinfo_cpulist_callback) siblings_parser, &siblings_context))
	{
		return true;
	} else {
		cpuinfo_log_info("failed to parse the list of core siblings for processor %"PRIu32" from %s",
			processor, core_siblings_filename);
		return false;
	}
}

bool cpuinfo_linux_detect_thread_siblings(
	uint32_t max_processors_count,
	uint32_t processor,
	cpuinfo_siblings_callback callback,
	void* context)
{
	char thread_siblings_filename[THREAD_SIBLINGS_FILENAME_SIZE];
	const int chars_formatted = snprintf(
		thread_siblings_filename, THREAD_SIBLINGS_FILENAME_SIZE, THREAD_SIBLINGS_FILENAME_FORMAT, processor);
	if ((unsigned int) chars_formatted >= THREAD_SIBLINGS_FILENAME_SIZE) {
		cpuinfo_log_warning("failed to format filename for thread siblings of processor %"PRIu32, processor);
		return false;
	}

	struct siblings_context siblings_context = {
		.group_name = "core",
		.max_processors_count = max_processors_count,
		.processor = processor,
		.callback = callback,
		.callback_context = context,
	};
	if (cpuinfo_linux_parse_cpulist(thread_siblings_filename,
		(cpuinfo_cpulist_callback) siblings_parser, &siblings_context))
	{
		return true;
	} else {
		cpuinfo_log_info("failed to parse the list of thread siblings for processor %"PRIu32" from %s",
			processor, thread_siblings_filename);
		return false;
	}
}