File size: 5,424 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$SIMD_TILE = BATCH_TILE // 8
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/vunary.h>
void xnn_f16_velu_ukernel__avx2_rr1_p3_x${BATCH_TILE}(
size_t batch,
const void* input,
void* output,
const union xnn_f16_elu_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(batch != 0);
assert(batch % sizeof(uint16_t) == 0);
assert(input != NULL);
assert(output != NULL);
const __m256 vprescale = _mm256_load_ps(params->avx2_rr1_p3.prescale);
const __m256 vsat_cutoff = _mm256_load_ps(params->avx2_rr1_p3.sat_cutoff);
const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p3.magic_bias);
const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p3.log2e);
const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p3.minus_ln2);
const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p3.c3);
const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p3.c2);
const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p3.c1);
const __m256 valpha = _mm256_load_ps(params->avx2_rr1_p3.alpha);
const __m256 vbeta = _mm256_load_ps(params->avx2_rr1_p3.beta);
const uint16_t* i = (const uint16_t*) input;
uint16_t* o = (uint16_t*) output;
$if BATCH_TILE > 8:
for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) {
__m256 vx0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
$for N in range(1, SIMD_TILE):
__m256 vx${N} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8})));
i += ${BATCH_TILE};
$for N in range(SIMD_TILE):
const __m256 vz${N} = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx${N}, vprescale));
$for N in range(SIMD_TILE):
__m256 vn${N} = _mm256_fmadd_ps(vz${N}, vlog2e, vmagic_bias);
$for N in range(SIMD_TILE):
__m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${N}), 23));
vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias);
$for N in range(SIMD_TILE):
__m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2, vz${N});
$for N in range(SIMD_TILE):
__m256 vp${N} = _mm256_fmadd_ps(vc3, vt${N}, vc2);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1);
vt${N} = _mm256_mul_ps(vt${N}, valpha);
$for N in range(SIMD_TILE):
vt${N} = _mm256_mul_ps(vt${N}, vs${N});
vs${N} = _mm256_fmsub_ps(vs${N}, valpha, valpha);
$for N in range(SIMD_TILE):
const __m256 ve${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vs${N});
vx${N} = _mm256_mul_ps(vx${N}, vbeta);
$for N in range(SIMD_TILE):
const __m256 vy${N} = _mm256_blendv_ps(vx${N}, ve${N}, vx${N});
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy0, _MM_FROUND_TO_NEAREST_INT));
$for N in range(1, SIMD_TILE):
_mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vy${N}, _MM_FROUND_TO_NEAREST_INT));
o += ${BATCH_TILE};
}
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
__m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
i += 8;
const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale));
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
__m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
vn = _mm256_sub_ps(vn, vmagic_bias);
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
__m256 vp = _mm256_fmadd_ps(vc3, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
vt = _mm256_mul_ps(vt, valpha);
vt = _mm256_mul_ps(vt, vs);
vs = _mm256_fmsub_ps(vs, valpha, valpha);
const __m256 ve = _mm256_fmadd_ps(vp, vt, vs);
vx = _mm256_mul_ps(vx, vbeta);
const __m256 vy = _mm256_blendv_ps(vx, ve, vx);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT));
o += 8;
}
if XNN_UNLIKELY(batch != 0) {
assert(batch >= 1 * sizeof(uint16_t));
assert(batch <= 7 * sizeof(uint16_t));
__m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale));
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
__m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
vn = _mm256_sub_ps(vn, vmagic_bias);
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
__m256 vp = _mm256_fmadd_ps(vc3, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
vt = _mm256_mul_ps(vt, valpha);
vt = _mm256_mul_ps(vt, vs);
vs = _mm256_fmsub_ps(vs, valpha, valpha);
const __m256 ve = _mm256_fmadd_ps(vp, vt, vs);
vx = _mm256_mul_ps(vx, vbeta);
const __m256 vy = _mm256_blendv_ps(vx, ve, vx);
__m128i vh = _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT);
if (batch & (4 * sizeof(uint16_t))) {
_mm_storel_epi64((__m128i*) o, vh);
vh = _mm_unpackhi_epi64(vh, vh);
o += 4;
}
if (batch & (2 * sizeof(uint16_t))) {
_mm_storeu_si32(o, vh);
vh = _mm_srli_epi64(vh, 32);
o += 2;
}
if (batch & (1 * sizeof(uint16_t))) {
*o = (uint16_t) _mm_extract_epi16(vh, 0);
}
}
}
|