File size: 11,528 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <xnnpack.h>
#include <benchmark/benchmark.h>
#include "bench/utils.h"
static void channel_shuffle_x8(benchmark::State& state, const char* net) {
const size_t batch_size = static_cast<size_t>(state.range(0));
const size_t groups = static_cast<size_t>(state.range(1));
const size_t group_channels = static_cast<size_t>(state.range(2));
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + batch_size * groups * group_channels);
std::vector<uint8_t> output(batch_size * groups * group_channels);
std::generate(input.begin(), input.end(), std::ref(u8rng));
xnn_status status = xnn_initialize(nullptr /* allocator */);
if (status != xnn_status_success) {
state.SkipWithError("failed to initialize XNNPACK");
return;
}
xnn_operator_t channel_shuffle_op = nullptr;
status = xnn_create_channel_shuffle_nc_x8(
groups, group_channels,
groups * group_channels /* input stride */,
groups * group_channels /* output stride */,
0 /* flags */, &channel_shuffle_op);
if (status != xnn_status_success || channel_shuffle_op == nullptr) {
state.SkipWithError("failed to create X8 Channel Shuffle operator");
return;
}
status = xnn_reshape_channel_shuffle_nc_x8(
channel_shuffle_op,
batch_size,
nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to reshape X8 Channel Shuffle operator");
return;
}
status = xnn_setup_channel_shuffle_nc_x8(
channel_shuffle_op,
input.data(), output.data());
if (status != xnn_status_success) {
state.SkipWithError("failed to setup X8 Channel Shuffle operator");
return;
}
for (auto _ : state) {
status = xnn_run_operator(channel_shuffle_op, nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to run X8 Channel Shuffle operator");
return;
}
}
status = xnn_delete_operator(channel_shuffle_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to delete X8 Channel Shuffle operator");
return;
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = batch_size * groups * group_channels;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(uint8_t);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
static void channel_shuffle_x32(benchmark::State& state, const char* net) {
const size_t batch_size = static_cast<size_t>(state.range(0));
const size_t groups = static_cast<size_t>(state.range(1));
const size_t group_channels = static_cast<size_t>(state.range(2));
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + batch_size * groups * group_channels);
std::vector<float> output(batch_size * groups * group_channels);
std::generate(input.begin(), input.end(), std::ref(f32rng));
xnn_status status = xnn_initialize(nullptr /* allocator */);
if (status != xnn_status_success) {
state.SkipWithError("failed to initialize XNNPACK");
return;
}
xnn_operator_t channel_shuffle_op = nullptr;
status = xnn_create_channel_shuffle_nc_x32(
groups, group_channels,
groups * group_channels /* input stride */,
groups * group_channels /* output stride */,
0 /* flags */, &channel_shuffle_op);
if (status != xnn_status_success || channel_shuffle_op == nullptr) {
state.SkipWithError("failed to create X32 Channel Shuffle operator");
return;
}
status = xnn_reshape_channel_shuffle_nc_x32(
channel_shuffle_op,
batch_size,
nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to reshape X32 Channel Shuffle operator");
return;
}
status = xnn_setup_channel_shuffle_nc_x32(
channel_shuffle_op,
input.data(), output.data());
if (status != xnn_status_success) {
state.SkipWithError("failed to setup X32 Channel Shuffle operator");
return;
}
for (auto _ : state) {
status = xnn_run_operator(channel_shuffle_op, nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to run X32 Channel Shuffle operator");
return;
}
}
status = xnn_delete_operator(channel_shuffle_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to delete X32 Channel Shuffle operator");
return;
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = batch_size * groups * group_channels;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
static void ShuffleNetV1G2Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 ********/
/* H W G CG */
b->Args({56 * 56, 2, 25});
b->Args({28 * 28, 2, 25});
/******** Stage 3 ********/
/* H W G CG */
b->Args({28 * 28, 2, 50});
b->Args({14 * 14, 2, 50});
/******** Stage 4 ********/
/* H W G CG */
b->Args({14 * 14, 2, 100});
b->Args({ 7 * 7, 2, 100});
}
static void ShuffleNetV1G3Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 *******/
/* H W G CG */
b->Args({56 * 56, 3, 20});
b->Args({28 * 28, 3, 20});
/******** Stage 3 *******/
/* H W G CG */
b->Args({28 * 28, 3, 40});
b->Args({14 * 14, 3, 40});
/******** Stage 4 *******/
/* H W G CG */
b->Args({14 * 14, 3, 80});
b->Args({ 7 * 7, 3, 80});
}
static void ShuffleNetV1G4Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 *******/
/* H W G CG */
b->Args({56 * 56, 4, 17});
b->Args({28 * 28, 4, 17});
/******** Stage 3 *******/
/* H W G CG */
b->Args({28 * 28, 4, 34});
b->Args({14 * 14, 4, 34});
/******** Stage 4 *******/
/* H W G CG */
b->Args({14 * 14, 4, 68});
b->Args({ 7 * 7, 4, 68});
}
static void ShuffleNetV1G8Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 *******/
/* H W G CG */
b->Args({56 * 56, 8, 12});
b->Args({28 * 28, 8, 12});
/******** Stage 3 *******/
/* H W G CG */
b->Args({28 * 28, 8, 24});
b->Args({14 * 14, 8, 24});
/******** Stage 4 *******/
/* H W G CG */
b->Args({14 * 14, 8, 48});
b->Args({ 7 * 7, 8, 48});
}
static void ShuffleNetV2x0_5Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 *******/
/* H W G CG */
b->Args({28 * 28, 2, 24});
/******** Stage 3 *******/
/* H W G CG */
b->Args({14 * 14, 2, 48});
/******** Stage 4 *******/
/* H W G CG */
b->Args({ 7 * 7, 2, 96});
}
static void ShuffleNetV2x1_0Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 ********/
/* H W G CG */
b->Args({28 * 28, 2, 58});
/******** Stage 3 ********/
/* H W G CG */
b->Args({14 * 14, 2, 116});
/******** Stage 4 ********/
/* H W G CG */
b->Args({ 7 * 7, 2, 232});
}
static void ShuffleNetV2x1_5Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 ********/
/* H W G CG */
b->Args({28 * 28, 2, 88});
/******** Stage 3 ********/
/* H W G CG */
b->Args({14 * 14, 2, 176});
/******** Stage 4 ********/
/* H W G CG */
b->Args({ 7 * 7, 2, 352});
}
static void ShuffleNetV2x2_0Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 ********/
/* H W G CG */
b->Args({28 * 28, 2, 122});
/******** Stage 3 ********/
/* H W G CG */
b->Args({14 * 14, 2, 244});
/******** Stage 4 ********/
/* H W G CG */
b->Args({ 7 * 7, 2, 488});
}
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x05, "ShuffleNet v2 x0.5")->Apply(ShuffleNetV2x0_5Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x10, "ShuffleNet v2 x1.0")->Apply(ShuffleNetV2x1_0Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x15, "ShuffleNet v2 x1.5")->Apply(ShuffleNetV2x1_5Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x20, "ShuffleNet v2 x2.0")->Apply(ShuffleNetV2x2_0Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x05, "ShuffleNet v2 x0.5")->Apply(ShuffleNetV2x0_5Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x10, "ShuffleNet v2 x1.0")->Apply(ShuffleNetV2x1_0Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x15, "ShuffleNet v2 x1.5")->Apply(ShuffleNetV2x1_5Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x20, "ShuffleNet v2 x2.0")->Apply(ShuffleNetV2x2_0Arguments)->UseRealTime();
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif
|