File size: 6,166 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$SIMD_TILE = BATCH_TILE // 8
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>

#include <immintrin.h>

#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/raddstoreexpminusmax.h>


void xnn_f16_raddstoreexpminusmax_ukernel__avx2_rr1_p2_x${BATCH_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
    size_t batch,
    const void* input,
    const void* max,
    void* output,
    void* sum,
    const union xnn_f16_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
  assert(batch != 0);
  assert(batch % sizeof(uint16_t) == 0);
  assert(input != NULL);
  assert(max != NULL);
  assert(output != NULL);
  assert(sum != NULL);

  const __m256 vi_max = _mm256_cvtph_ps(_mm_set1_epi16((short) *((const uint16_t*) max)));
  const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p2.log2e);
  const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p2.magic_bias);
  const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p2.minus_ln2);
  const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p2.c2);
  const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p2.c1);
  const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p2.denorm_cutoff);

  const uint16_t* i = (const uint16_t*) input;
  uint16_t* o = (uint16_t*) output;
  $for K in range(ACCUMULATORS):
    __m256 vacc${K} = _mm256_setzero_ps();
  for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) {
    const __m256 vi0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
    $for N in range(1, SIMD_TILE):
      const __m256 vi${ABC[N]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8})));
    i += ${BATCH_TILE};

    $for N in range(SIMD_TILE):
      const __m256 vx${ABC[N]} = _mm256_sub_ps(vi${ABC[N]}, vi_max);

    $for N in range(SIMD_TILE):
      __m256 vn${ABC[N]} = _mm256_fmadd_ps(vx${ABC[N]}, vlog2e, vmagic_bias);

    $for N in range(SIMD_TILE):
      const __m256 vs${ABC[N]} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${ABC[N]}), 23));

    $for N in range(SIMD_TILE):
      vn${ABC[N]} = _mm256_sub_ps(vn${ABC[N]}, vmagic_bias);

    $for N in range(SIMD_TILE):
      __m256 vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2, vx${ABC[N]});

    $for N in range(SIMD_TILE):
      const __m256 vp${ABC[N]} = _mm256_fmadd_ps(vc2, vt${ABC[N]}, vc1);

    $for N in range(SIMD_TILE):
      vt${ABC[N]} = _mm256_mul_ps(vt${ABC[N]}, vs${ABC[N]});

    $for N in range(SIMD_TILE):
      __m256 vf${ABC[N]} = _mm256_fmadd_ps(vt${ABC[N]}, vp${ABC[N]}, vs${ABC[N]});

    $for N in range(SIMD_TILE):
      vf${ABC[N]} = _mm256_andnot_ps(_mm256_cmp_ps(vx${ABC[N]}, vdenorm_cutoff, _CMP_LT_OS), vf${ABC[N]});

    _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf0, _MM_FROUND_TO_NEAREST_INT));
    $for N in range(1, SIMD_TILE):
      _mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vf${ABC[N]}, _MM_FROUND_TO_NEAREST_INT));
    o += ${BATCH_TILE};

    $for N in range(SIMD_TILE):
      vacc${N % ACCUMULATORS} = _mm256_add_ps(vacc${N % ACCUMULATORS}, vf${ABC[N]});
  }
  $if ACCUMULATORS > 1:
    $ACC_SLICE = 1
    $while ACC_SLICE < ACCUMULATORS:
      $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
        $if A + ACC_SLICE < ACCUMULATORS:
          vacc${A} = _mm256_add_ps(vacc${A}, vacc${A + ACC_SLICE});
      $ACC_SLICE *= 2

  __m256 vacc = vacc0;
  for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
    const __m256 vi = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
    i += 8;

    const __m256 vx = _mm256_sub_ps(vi, vi_max);

    __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);

    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));

    vn = _mm256_sub_ps(vn, vmagic_bias);

    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx);

    const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1);
    vt = _mm256_mul_ps(vt, vs);
    __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
    vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);

    _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT));
    o += 8;

    vacc = _mm256_add_ps(vacc, vf);
  }
  __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1));
  if (batch != 0) {
    assert(batch >= 1 * sizeof(uint16_t));
    assert(batch <= 7 * sizeof(uint16_t));

    const __m256 vi = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));

    const __m256 vx = _mm256_sub_ps(vi, vi_max);

    __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);

    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));

    vn = _mm256_sub_ps(vn, vmagic_bias);

    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx);

    const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1);
    vt = _mm256_mul_ps(vt, vs);
    __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
    vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);

    __m128i vh = _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT);
    __m128 vf_lo = _mm256_castps256_ps128(vf);
    if (batch & (4 * sizeof(uint16_t))) {
      _mm_storel_epi64((__m128i*) o, vh);
      vh = _mm_unpackhi_epi64(vh, vh);
      vacc_lo = _mm_add_ps(vacc_lo, vf_lo);
      vf_lo = _mm256_extractf128_ps(vf, 1);
      o += 4;
    }
    if (batch & (2 * sizeof(uint16_t))) {
      _mm_storeu_si32(o, vh);
      vh = _mm_srli_epi64(vh, 32);
      vacc_lo = _mm_blend_ps(_mm_add_ps(vacc_lo, vf_lo), vacc_lo, 0xC);
      vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
      o += 2;
    }
    if (batch & (1 * sizeof(uint16_t))) {
      *o = (uint16_t) _mm_extract_epi16(vh, 0);
      vacc_lo = _mm_add_ss(vacc_lo, vf_lo);
    }
  }
  vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo));
  vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo));
  *((uint16_t*) sum) = (uint16_t) _mm_extract_epi16(_mm_cvtps_ph(vacc_lo, _MM_FROUND_TO_NEAREST_INT), 0);
  _mm256_zeroupper();
}