File size: 6,904 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Auto-generated file. Do not edit!
//   Template: src/f16-ibilinear-chw/neonfp16arith.c.in
//   Generator: tools/xngen
//
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <assert.h>

#include <arm_neon.h>

#include <xnnpack/ibilinear.h>


void xnn_f16_ibilinear_chw_ukernel__neonfp16arith_p4(
    size_t output_pixels,
    size_t channels,
    const void** restrict input,
    size_t input_offset,
    const void* restrict weights,
    void* restrict output,
    size_t input_increment) XNN_OOB_READS
{
  assert(output_pixels != 0);
  assert(channels != 0);
  assert(input_increment % sizeof(uint16_t) == 0);

  uint16_t* o = (uint16_t*) output;
  do {
    const uint16_t** i = (const uint16_t**)input;
    const uint16_t* w = weights;
    size_t p = output_pixels;

    for (; p >= 4; p -= 4) {
      const uint16_t* itl0 = (const uint16_t*) ((uintptr_t) i[0] + input_offset);
      const uint16_t* ibl0 = (const uint16_t*) ((uintptr_t) i[1] + input_offset);
      const uint16_t* itl1 = (const uint16_t*) ((uintptr_t) i[2] + input_offset);
      const uint16_t* ibl1 = (const uint16_t*) ((uintptr_t) i[3] + input_offset);
      const uint16_t* itl2 = (const uint16_t*) ((uintptr_t) i[4] + input_offset);
      const uint16_t* ibl2 = (const uint16_t*) ((uintptr_t) i[5] + input_offset);
      const uint16_t* itl3 = (const uint16_t*) ((uintptr_t) i[6] + input_offset);
      const uint16_t* ibl3 = (const uint16_t*) ((uintptr_t) i[7] + input_offset);
      i += 8;

      const uint16x4x2_t vw = vld2_u16(w); w += 8;

      float16x8_t vtltr = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) itl0));
      float16x8_t vblbr = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) ibl0));
      vtltr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) itl1, vreinterpretq_u32_f16(vtltr), 1));
      vblbr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) ibl1, vreinterpretq_u32_f16(vblbr), 1));
      vtltr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) itl2, vreinterpretq_u32_f16(vtltr), 2));
      vblbr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) ibl2, vreinterpretq_u32_f16(vblbr), 2));
      vtltr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) itl3, vreinterpretq_u32_f16(vtltr), 3));
      vblbr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) ibl3, vreinterpretq_u32_f16(vblbr), 3));

      const float16x4_t valphah = vreinterpret_f16_u16(vw.val[0]);
      const float16x4_t valphav = vreinterpret_f16_u16(vw.val[1]);

      const float16x8_t vldrd = vsubq_f16(vblbr, vtltr);

      const float16x4x2_t vld_t = vuzp_f16(vget_low_f16(vldrd), vget_high_f16(vldrd));
      const float16x4_t vld = vld_t.val[0];
      const float16x4_t vrd = vld_t.val[1];

      const float16x4x2_t vtl_t = vuzp_f16(vget_low_f16(vtltr), vget_high_f16(vtltr));
      const float16x4_t vtl = vtl_t.val[0];
      const float16x4_t vtr = vtl_t.val[1];

      const float16x4_t vl = vfma_f16(vtl, vld, valphav);
      const float16x4_t vr = vfma_f16(vtr, vrd, valphav);

      const float16x4_t vd = vsub_f16(vr, vl);
      const float16x4_t vo = vfma_f16(vl, vd, valphah);

      vst1_u16(o, vreinterpret_u16_f16(vo)); o += 4;
    }
    if XNN_UNLIKELY(p != 0) {
      if (p & 2) {
        const uint16_t* itl0 = (const uint16_t*) ((uintptr_t) i[0] + input_offset);
        const uint16_t* ibl0 = (const uint16_t*) ((uintptr_t) i[1] + input_offset);
        const uint16_t* itl1 = (const uint16_t*) ((uintptr_t) i[2] + input_offset);
        const uint16_t* ibl1 = (const uint16_t*) ((uintptr_t) i[3] + input_offset);
        i += 4;

        const float16x4_t vw = vreinterpret_f16_u16(vld1_u16(w)); w += 4;

        const float16x4x2_t vwhv = vuzp_f16(vw, vw);
        const float16x4_t valphah = vwhv.val[0];
        const float16x4_t valphav = vwhv.val[1];

        float16x4_t vtltr = vreinterpret_f16_u32(vld1_dup_u32((const void*) itl0));
        float16x4_t vblbr = vreinterpret_f16_u32(vld1_dup_u32((const void*) ibl0));

        vtltr = vreinterpret_f16_u32(vld1_lane_u32((const void*) itl1, vreinterpret_u32_f16(vtltr), 1));
        vblbr = vreinterpret_f16_u32(vld1_lane_u32((const void*) ibl1, vreinterpret_u32_f16(vblbr), 1));

        const float16x4_t vldrd = vsub_f16(vblbr, vtltr);

        const float16x4x2_t vld_t = vuzp_f16(vldrd, vldrd);
        const float16x4_t vld = vld_t.val[0];
        const float16x4_t vrd = vld_t.val[1];

        const float16x4x2_t vtl_t = vuzp_f16(vtltr, vtltr);
        const float16x4_t vtl = vtl_t.val[0];
        const float16x4_t vtr = vtl_t.val[1];

        const float16x4_t vl = vfma_f16(vtl, vld, valphav);
        const float16x4_t vr = vfma_f16(vtr, vrd, valphav);

        const float16x4_t vd = vsub_f16(vr, vl);
        const float16x4_t vo = vfma_f16(vl, vd, valphah);

        vst1_lane_u32((void*) o, vreinterpret_u32_f16(vo), 0); o += 2;
      }
      if (p & 1) {
        // We are computing the following formula:
        //   result = (1 - alpha_h) * (1 - alpha_v) * top_left +
        //                 alpha_h  * (1 - alpha_v) * top_right +
        //            (1 - alpha_h) *      alpha_v  * bottom_left +
        //                 alpha_h  *      alpha_v  * bottom_right.
        //
        // Rearranging gives
        //   result =    left + alpha_h * (right        - left),
        // where
        //   left =  top_left + alpha_v * (bottom_left  - top_left),
        //  right = top_right + alpha_v * (bottom_right - top_right).

        const uint16_t* itl = (const uint16_t*) ((uintptr_t) i[0] + input_offset);
        const uint16_t* ibl = (const uint16_t*) ((uintptr_t) i[1] + input_offset);
        i += 2;

        const float16x4_t vw = vreinterpret_f16_u32(vld1_dup_u32((const void*) w)); w += 2;

        const float16x4x2_t vwhv = vuzp_f16(vw, vw);
        const float16x4_t valphah = vwhv.val[0];
        const float16x4_t valphav = vwhv.val[1];

        const float16x4_t vtltr = vreinterpret_f16_u32(vld1_dup_u32((const void*) itl));
        const float16x4_t vblbr = vreinterpret_f16_u32(vld1_dup_u32((const void*) ibl));

        const float16x4_t vldrd = vsub_f16(vblbr, vtltr);

        const float16x4x2_t vld_t = vuzp_f16(vldrd, vldrd);
        const float16x4_t vld = vld_t.val[0];
        const float16x4_t vrd = vld_t.val[1];

        const float16x4x2_t vtl_t = vuzp_f16(vtltr, vtltr);
        const float16x4_t vtl = vtl_t.val[0];
        const float16x4_t vtr = vtl_t.val[1];

        const float16x4_t vl = vfma_f16(vtl, vld, valphav);
        const float16x4_t vr = vfma_f16(vtr, vrd, valphav);

        const float16x4_t vd = vsub_f16(vr, vl);
        const float16x4_t vo = vfma_f16(vl, vd, valphah);

        vst1_lane_u16(o, vreinterpret_u16_f16(vo), 0); o += 1;
      }
    }

    input_offset += input_increment;
  } while (--channels != 0);
}