File size: 9,899 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <random>
#include <vector>

#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/conv.h"
#include "bench/utils.h"

#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/igemm.h>
#include <xnnpack/indirection.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/operator.h>
#include <xnnpack/pack.h>


static void f16_igemm(benchmark::State& state,
  xnn_f16_igemm_minmax_ukernel_fn igemm,
  uint32_t mr, uint32_t nr, uint32_t kr, uint32_t sr,
  xnn_init_f16_minmax_params_fn init_params,
  benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
  if (isa_check != nullptr && !isa_check(state)) {
    return;
  }

  const size_t input_height = state.range(0);
  const size_t input_width = state.range(1);
  const size_t kernel_height = state.range(2);
  const size_t kernel_width = state.range(3);
  const size_t kernel_size = kernel_height * kernel_width;
  const size_t padding_height = state.range(4);
  const size_t padding_width = state.range(5);
  const size_t subsampling = state.range(6);
  const size_t dilation = state.range(7);
  const size_t group_input_channels = state.range(8);
  const size_t group_output_channels = state.range(9);

  std::random_device random_device;
  auto rng = std::mt19937(random_device());
  auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
  auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);

  const size_t output_pixel_stride = group_output_channels;
  const size_t input_pixel_stride = group_input_channels;
  const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1;
  const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1;
  const size_t padding_left = padding_width / 2;
  const size_t padding_top = padding_height / 2;
  const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1;
  const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1;
  const size_t output_size = output_height * output_width;

  const size_t mc_stride = benchmark::utils::RoundUp<size_t>(output_size, mr);
  const size_t nc_stride = benchmark::utils::RoundUp<size_t>(group_output_channels, nr);
  const size_t kc_stride = benchmark::utils::RoundUp<size_t>(group_input_channels, kr * sr);

  std::vector<uint16_t> a(input_height * input_width * input_pixel_stride + XNN_EXTRA_BYTES / sizeof(uint16_t));
  std::generate(a.begin(), a.end(), std::ref(f16rng));
  std::vector<uint16_t> k(group_output_channels * kernel_height * kernel_width * group_input_channels);
  std::generate(k.begin(), k.end(), std::ref(f16rng));
  std::vector<uint16_t> b(group_output_channels);
  std::generate(b.begin(), b.end(), std::ref(f16rng));

  std::vector<uint16_t> z(group_input_channels + XNN_EXTRA_BYTES / sizeof(uint16_t));

  const size_t w_elements = (kernel_size * kc_stride + 1) * nc_stride;
  const size_t i_elements = mc_stride * kernel_size;
  const size_t c_elements = output_height * output_width * output_pixel_stride;
  const size_t num_buffers = 1 +
    benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
      sizeof(uint16_t) * (w_elements + c_elements) + sizeof(void*) * i_elements);

  std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> w(w_elements * num_buffers);
  std::fill(w.begin(), w.end(), 0);
  xnn_pack_f16_conv_goki_w(
    1 /* groups */, group_output_channels, kernel_size, group_input_channels,
    nr, kr, sr, k.data(), b.data(), w.data(), 0 /* extra bytes */, nullptr);
  for (size_t n = 1; n < num_buffers; n++) {
    std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements);
  }

  std::vector<const uint16_t*> i(i_elements * num_buffers);
  xnn_operator convolution_op = { };
  convolution_op.indirection_buffer   = reinterpret_cast<const void**>(i.data());
  convolution_op.input                = a.data();
  convolution_op.input_pixel_stride   = input_pixel_stride;
  convolution_op.zero_buffer          = z.data();
  convolution_op.groups               = 1;
  convolution_op.group_input_channels = group_input_channels;
  convolution_op.batch_size           = 1;
  convolution_op.input_height         = input_height;
  convolution_op.input_width          = input_width;
  convolution_op.output_height        = output_height;
  convolution_op.output_width         = output_width;
  convolution_op.kernel_height        = kernel_height;
  convolution_op.kernel_width         = kernel_width;
  convolution_op.stride_height        = subsampling;
  convolution_op.stride_width         = subsampling;
  convolution_op.dilation_height      = dilation;
  convolution_op.dilation_width       = dilation;
  convolution_op.padding_top          = padding_top;
  convolution_op.padding_left         = padding_left;
  xnn_indirection_init_conv2d(&convolution_op, mr, XNN_LOG2_SIZEOF_HALF);
  for (size_t n = 1; n < num_buffers; n++) {
    std::copy(i.cbegin(), i.cbegin() + i_elements, i.begin() + n * i_elements);
  }

  std::vector<uint16_t> c(c_elements * num_buffers);
  std::fill(c.begin(), c.end(), UINT16_C(0x7E00) /* NaN */);

  // Prepare minmax parameters.
  xnn_f16_minmax_params params;
  init_params(&params,
    UINT16_C(0x7C00) /* inf */, UINT16_C(0xFC00) /* -inf */);

  size_t buffer_index = 0;
  for (auto _ : state) {
    state.PauseTiming();
    benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t));
    buffer_index = (buffer_index + 1) % num_buffers;
    state.ResumeTiming();

    for (uint32_t m = 0; m < output_size; m += mr) {
      const uint32_t mb = min(output_size - m, mr);
      for (uint32_t n = 0; n < group_output_channels; n += nr) {
        const uint32_t nb = min(group_output_channels - n, nr);
        igemm(
          mb, nb, group_input_channels * sizeof(uint16_t), kernel_size * mr * sizeof(void*),
          reinterpret_cast<const void**>(i.data()) + buffer_index * i_elements + m,
          w.data() + buffer_index * w_elements + n * (kc_stride * kernel_size + 1),
          c.data() + buffer_index * c_elements + m * group_output_channels + n, group_output_channels * sizeof(uint16_t), nr * sizeof(uint16_t),
          0, z.data(), &params);
      }
    }
  }

  const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
  if (cpu_frequency != 0) {
    state.counters["cpufreq"] = cpu_frequency;
  }

  state.counters["FLOPS"] = benchmark::Counter(
    uint64_t(state.iterations()) * 2 *
      output_height * output_width *
      group_input_channels * group_output_channels *
      kernel_height * kernel_width,
    benchmark::Counter::kIsRate);
}

#if XNN_ARCH_X86 || XNN_ARCH_X86_64
  static void f16_f32acc_igemm_1x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_igemm(state, xnn_f16_f32acc_igemm_minmax_ukernel_1x8__avx2_broadcast, 1, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_igemm_4x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_igemm(state, xnn_f16_f32acc_igemm_minmax_ukernel_4x8__avx2_broadcast, 4, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_igemm_5x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_igemm(state, xnn_f16_f32acc_igemm_minmax_ukernel_5x8__avx2_broadcast, 5, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_igemm_6x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_igemm(state, xnn_f16_f32acc_igemm_minmax_ukernel_6x8__avx2_broadcast, 6, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_igemm_7x8__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_igemm(state, xnn_f16_f32acc_igemm_minmax_ukernel_7x8__avx2_broadcast, 7, 8, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_igemm_1x16__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_igemm(state, xnn_f16_f32acc_igemm_minmax_ukernel_1x16__avx2_broadcast, 1, 16, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_igemm_3x16__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_igemm(state, xnn_f16_f32acc_igemm_minmax_ukernel_3x16__avx2_broadcast, 3, 16, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_igemm_4x16__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_igemm(state, xnn_f16_f32acc_igemm_minmax_ukernel_4x16__avx2_broadcast, 4, 16, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }
  static void f16_f32acc_igemm_5x16__avx2_broadcast(benchmark::State& state, const char* net) {
    f16_igemm(state, xnn_f16_f32acc_igemm_minmax_ukernel_5x16__avx2_broadcast, 5, 16, 1, 1,
      xnn_init_f16_minmax_avx_params, benchmark::utils::CheckAVX2);
  }

  BENCHMARK_CONV(f16_f32acc_igemm_1x8__avx2_broadcast)
  BENCHMARK_CONV(f16_f32acc_igemm_4x8__avx2_broadcast)
  BENCHMARK_CONV(f16_f32acc_igemm_5x8__avx2_broadcast)
  BENCHMARK_CONV(f16_f32acc_igemm_6x8__avx2_broadcast)
  BENCHMARK_CONV(f16_f32acc_igemm_7x8__avx2_broadcast)
  BENCHMARK_CONV(f16_f32acc_igemm_1x16__avx2_broadcast)
  BENCHMARK_CONV(f16_f32acc_igemm_3x16__avx2_broadcast)
  BENCHMARK_CONV(f16_f32acc_igemm_4x16__avx2_broadcast)
  BENCHMARK_CONV(f16_f32acc_igemm_5x16__avx2_broadcast)
#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64

#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif