File size: 16,524 Bytes
40588a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
# Copyright 2022 Dirk Moerenhout. All rights reserved.
#
# This program is free software: you can redistribute it and/or modify it under the terms
# of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not,
# see <https://www.gnu.org/licenses/>.
# We need sys for argv
import sys
# We need os.path for isdir, isfile
import os.path
# Our settings are in json format
import json
# To be safe we force gc to lower RAM pressure
import gc
# We want to replace the text encoder in the pipeline
import functools
# We want to parse arguments
import argparse
# Numpy is used to provide a random generator
import numpy
# We need to load images for img2img
# We want to save data to PNG
from PIL import Image, PngImagePlugin
# The pipelines
from diffusers import OnnxStableDiffusionPipeline, OnnxStableDiffusionImg2ImgPipeline
from pipeline_onnx_stable_diffusion_controlnet import OnnxStableDiffusionControlNetPipeline
# Model needed to load Text Encoder on CPU
from diffusers import OnnxRuntimeModel
# The schedulers
from diffusers import (
DDIMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2DiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler
)
# Support special text encoders
import OnnxDiffusersUI.lpw_pipe
# Default settings
defSettings = {
"width": 512,
"height": 512,
"reslist": [],
"steps": 30,
"stepslist": [],
"scale": 7.5,
"scalelist":[],
"seed":0,
"seedend":0,
"seedlist":[],
"task": "txt2img",
"model":"sd2_1-fp16",
"prompt": "",
"promptlist":[],
"negative_prompt": "",
"textenc": "standard",
"scheduler": "pndm",
"schedulerlist": [],
"strength": 0.9,
"strengthlist": []
}
parser = argparse.ArgumentParser()
parser.add_argument(
"--cpu-textenc",
action="store_true",
help="Load Text Encoder on CPU to save VRAM"
)
parser.add_argument(
"--subdirs",
action="store_true",
help="Add subdirs with settings.json to projects to run"
)
parser.add_argument(
'project',
nargs='+',
type=str,
help="Provide projects as directories that contain settings.json"
)
args = parser.parse_args()
projects=args.project
if args.subdirs:
for proj in args.project:
obj = os.scandir(proj)
for entry in obj:
if entry.is_dir():
if os.path.isfile(f"{proj}/{entry.name}/settings.json"):
projects.append(f"{proj}/{entry.name}")
for proj in projects:
print("Running project "+proj)
# Check for directory
if os.path.isdir(proj):
if os.path.isfile(proj+"/settings.json"):
with open(proj+"/settings.json", encoding="utf-8") as confFile:
projSettings=json.load(confFile)
# Merge dictionaries with project settings taking precedence
runSettings = defSettings | projSettings
# We need prompts
prereqmet=len(runSettings['prompt'])>0 or len(runSettings['promptlist'])>0
# We need a model
model="model/"+runSettings['model']
prereqmet=prereqmet and os.path.isfile(model+"/unet/model.onnx")
# We need a start image to do img2img or controlnet
if runSettings['task']=="img2img" or runSettings['task']=="controlnet":
infile=proj+"/input.png"
prereqmet = prereqmet and os.path.isfile(infile)
if prereqmet:
sched = {
"ddim": DDIMScheduler.from_pretrained(model, subfolder="scheduler"),
"deis": DEISMultistepScheduler.from_pretrained(model, subfolder="scheduler"),
"dpms_ms": DPMSolverMultistepScheduler.from_pretrained(model, subfolder="scheduler"),
"dpms_ss": DPMSolverSinglestepScheduler.from_pretrained(model, subfolder="scheduler"),
"euler_anc": EulerAncestralDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"euler": EulerDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"heun": HeunDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"kdpm2": KDPM2DiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"lms": LMSDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
"pndm": PNDMScheduler.from_pretrained(model, subfolder="scheduler"),
"unipc": UniPCMultistepScheduler.from_pretrained(model, subfolder="scheduler")
}
if runSettings['task']=="img2img":
init_image = Image.open(infile).convert("RGB")
if args.cpu_textenc:
cputextenc=OnnxRuntimeModel.from_pretrained(model+"/text_encoder")
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
text_encoder=cputextenc,
safety_checker=None,
feature_extractor=None
)
else:
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
safety_checker=None,
feature_extractor=None
)
elif runSettings['task']=="controlnet":
init_image = Image.open(infile).convert("RGB")
if args.cpu_textenc:
cputextenc=OnnxRuntimeModel.from_pretrained(model+"/text_encoder")
pipe = OnnxStableDiffusionControlNetPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
text_encoder=cputextenc,
safety_checker=None,
feature_extractor=None
)
else:
pipe = OnnxStableDiffusionControlNetPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
safety_checker=None,
feature_extractor=None
)
else:
if args.cpu_textenc:
cputextenc=OnnxRuntimeModel.from_pretrained(model+"/text_encoder")
pipe = OnnxStableDiffusionPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
text_encoder=cputextenc,
safety_checker=None,
feature_extractor=None
)
else:
pipe = OnnxStableDiffusionPipeline.from_pretrained(
model,
provider="DmlExecutionProvider",
revision="onnx",
scheduler=sched['pndm'],
safety_checker=None,
feature_extractor=None
)
if runSettings['textenc'] == "lpw":
pipe._encode_prompt = functools.partial(lpw_pipe._encode_prompt, pipe)
generator = numpy.random
# Set schedulers for projects
if len(runSettings['schedulerlist'])==0:
schedulerlist=[runSettings['scheduler']]
else:
schedulerlist=runSettings['schedulerlist']
# Set seeds for project
if len(runSettings['seedlist'])==0:
if runSettings['seed']>runSettings['seedend']:
runSettings['seedend']=runSettings['seed']
seedlist=range(runSettings['seed'],runSettings['seedend']+1)
else:
seedlist=runSettings['seedlist']
# Set resolustions for project
if len(runSettings['reslist'])==0:
restuples=[(runSettings['width'],runSettings['height'])]
else:
restuples=[]
for resstr in runSettings['reslist']:
restuples.append(tuple(map(int, resstr.split("x"))))
# Set steps for project
if len(runSettings['stepslist'])==0:
stepslist=[runSettings['steps']]
else:
stepslist=runSettings['stepslist']
# Set guidance scales for project
if len(runSettings['scalelist'])==0:
scalelist=[runSettings['scale']]
else:
scalelist=runSettings['scalelist']
# Set prompts for project
if len(runSettings['promptlist'])==0:
promptlist=[runSettings['prompt']]
else:
promptlist=runSettings['promptlist']
# Set strengths for project
if len(runSettings['strengthlist'])==0:
strengthlist=[runSettings['strength']]
else:
strengthlist=runSettings['strengthlist']
imgnr=len(schedulerlist)*len(promptlist)*len(seedlist)*len(restuples)*len(stepslist)*len(scalelist)*len(strengthlist)
imgdone=0
for scheduler in schedulerlist:
if not sched[scheduler]:
scheduler="pndm"
pipe.scheduler=sched[scheduler]
promptnum=0
for prompt in promptlist:
for seed in seedlist:
for res in restuples:
for steps in stepslist:
for scale in scalelist:
for strength in strengthlist:
if runSettings['task']=="img2img":
filename=(
f"{proj}/result-p{promptnum}-seed{seed}-{res[0]}x{res[1]}-"+
f"-steps-{steps}-{scheduler}-scale-"+str(scale).replace(".","_")+
"-strength-"+str(strength).replace(".","_")+".png"
)
elif runSettings['task']=="controlnet":
filename=(
f"{proj}/result-p{promptnum}-seed{seed}-{res[0]}x{res[1]}-"+
f"-steps-{steps}-{scheduler}-scale-"+str(scale).replace(".","_")+
"-strength-"+str(strength).replace(".","_")+".png"
)
else:
filename=(
f"{proj}/result-p{promptnum}-seed{seed}-{res[0]}x{res[1]}-"+
f"-steps-{steps}-{scheduler}-scale-"+str(scale).replace(".","_")+".png"
)
if not os.path.isfile(filename):
generator.seed(seed)
if runSettings['task']=="img2img":
image = pipe(
image=init_image,
strength=strength,
prompt=prompt,
negative_prompt=runSettings['negative_prompt'],
num_inference_steps=steps,
guidance_scale=scale,
generator=generator).images[0]
elif runSettings['task']=="controlnet":
image = pipe(
image=init_image,
controlnet_conditioning_scale=strength,
prompt=prompt,
negative_prompt=runSettings['negative_prompt'],
num_inference_steps=steps,
guidance_scale=scale,
generator=generator).images[0]
else:
image = pipe(
prompt=prompt,
negative_prompt=runSettings['negative_prompt'],
width=res[0],
height=res[1],
num_inference_steps=steps,
guidance_scale=scale,
generator = generator).images[0]
metadata = PngImagePlugin.PngInfo()
metadata.add_text("Generator","Stable Diffusion ONNX https://github.com/Amblyopius/Stable-Diffusion-ONNX-FP16")
metadata.add_text("SD Model (local name)",model)
metadata.add_text("SD Prompt",prompt)
metadata.add_text("SD Negative Prompt",runSettings['negative_prompt'])
metadata.add_text("SD Scheduler",scheduler)
metadata.add_text("SD Steps",str(steps))
metadata.add_text("SD Guidance Scale",str(scale))
image.save(filename, pnginfo = metadata)
else:
print("Skipping existing image!")
imgdone+=1
print(f"Finished {imgdone}/{imgnr}")
promptnum+=1
del pipe
gc.collect()
else:
print("Minimum requirements not met! Skipping")
else:
print("Settings not found! Skipping")
else:
print("Path not found! Skipping")
|