File size: 5,606 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

$assert CHANNEL_TILE % 4 == 0
$assert KERNEL_TILE >= 2
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
#include <assert.h>

#include <arm_neon.h>

#include <xnnpack/dwconv.h>


void xnn_f32_dwconv_minmax_ukernel_${KERNEL_TILE}p${CHANNEL_TILE}c__${"neonfma" if FMA else "neon"}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
    size_t channels,
    size_t output_width,
    const float** input,
    const float* weights,
    float* output,
    intptr_t input_stride,
    size_t output_increment,
    size_t input_offset,
    const float* zero,
    const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
  assert(channels != 0);
  assert(output_width != 0);

  const float32x4_t vmax = vld1q_dup_f32(&params->scalar.max);
  const float32x4_t vmin = vld1q_dup_f32(&params->scalar.min);
  do {
    $for K in range(KERNEL_TILE):
      const float* i${K} = input[${K}];
      assert(i${K} != NULL);
      if XNN_UNPREDICTABLE(i${K} != zero) {
        i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
      }

    input = (const float**) ((uintptr_t) input + input_stride);

    size_t c = channels;
    const float* w = weights;
    for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
      $for C in range(0, CHANNEL_TILE, 4):
        float32x4_t vacc${ABC[C:C+4]}p0 = vld1q_f32(w); w += 4;

      $for K in range(KERNEL_TILE):

        $for C in range(0, CHANNEL_TILE, 4):
          const float32x4_t vi${K}x${ABC[C:C+4]} = vld1q_f32(i${K}); i${K} += 4;
        $for C in range(0, CHANNEL_TILE, 4):
          const float32x4_t vk${K}x${ABC[C:C+4]} = vld1q_f32(w); w += 4;
        $for C in range(0, CHANNEL_TILE, 4):
          $if 1 <= K < ACCUMULATORS:
            float32x4_t vacc${ABC[C:C+4]}p${K} = vmulq_f32(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]});
          $else:
            vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = ${VMULADDQ_F32}(vacc${ABC[C:C+4]}p${K % ACCUMULATORS}, vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]});

      $if ACCUMULATORS > 1:
        // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0
        $ACC_STEP = 1
        $while ACC_STEP < ACCUMULATORS:
          $for A in range(0, ACCUMULATORS, ACC_STEP * 2):
            $if A + ACC_STEP < ACCUMULATORS:
              $for C in range(0, CHANNEL_TILE, 4):
                vacc${ABC[C:C+4]}p${A} = vaddq_f32(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_STEP});
          $ACC_STEP *= 2

      $for C in range(0, CHANNEL_TILE, 4):
        float32x4_t vacc${ABC[C:C+4]} = vmaxq_f32(vacc${ABC[C:C+4]}p0, vmin);
      $for C in range(0, CHANNEL_TILE, 4):
        vacc${ABC[C:C+4]} = vminq_f32(vacc${ABC[C:C+4]}, vmax);

      $for C in range(0, CHANNEL_TILE, 4):
        vst1q_f32(output, vacc${ABC[C:C+4]}); output += 4;
    }
    $if CHANNEL_TILE > 4:
      for (; c >= 4; c -= 4) {
        float32x4_t vacc0123p0 = vld1q_f32(w); w += 4;

        $for K in range(KERNEL_TILE):

          const float32x4_t vi${K}x0123 = vld1q_f32(i${K}); i${K} += 4;
          const float32x4_t vk${K}x0123 = vld1q_f32(w + ${(K + 1) * CHANNEL_TILE - 4});
          $if 1 <= K < ACCUMULATORS:
            float32x4_t vacc0123p${K} = vmulq_f32(vi${K}x0123, vk${K}x0123);
          $else:
            vacc0123p${K % ACCUMULATORS} = ${VMULADDQ_F32}(vacc0123p${K % ACCUMULATORS}, vi${K}x0123, vk${K}x0123);

        $if ACCUMULATORS > 1:
          // Add up all accumulators to vacc0123p0
          $ACC_STEP = 1
          $while ACC_STEP < ACCUMULATORS:
            $for A in range(0, ACCUMULATORS, ACC_STEP * 2):
              $if A + ACC_STEP < ACCUMULATORS:
                vacc0123p${A} = vaddq_f32(vacc0123p${A}, vacc0123p${A + ACC_STEP});
            $ACC_STEP *= 2

        float32x4_t vacc0123 = vmaxq_f32(vacc0123p0, vmin);
        vacc0123 = vminq_f32(vacc0123, vmax);

        vst1q_f32(output, vacc0123); output += 4;
      }
    if XNN_UNLIKELY(c != 0) {
      $if CHANNEL_TILE == 4:
        float32x4_t vacc0123p0 = vld1q_f32(w); w += 4;
      $else:
        float32x4_t vacc0123p0 = vld1q_f32(w);

      $for K in range(KERNEL_TILE):

        const float32x4_t vi${K}x0123 = vld1q_f32(i${K});
        $if CHANNEL_TILE == 4:
          const float32x4_t vk${K}x0123 = vld1q_f32(w); w += 4;
        $else:
          const float32x4_t vk${K}x0123 = vld1q_f32(w + ${(K + 1) * CHANNEL_TILE});
        $if 1 <= K < ACCUMULATORS:
          float32x4_t vacc0123p${K} = vmulq_f32(vi${K}x0123, vk${K}x0123);
        $else:
          vacc0123p${K % ACCUMULATORS} = ${VMULADDQ_F32}(vacc0123p${K % ACCUMULATORS}, vi${K}x0123, vk${K}x0123);

      $if ACCUMULATORS > 1:
        // Add up all accumulators to vacc0123p0
        $ACC_STEP = 1
        $while ACC_STEP < ACCUMULATORS:
          $for A in range(0, ACCUMULATORS, ACC_STEP * 2):
            $if A + ACC_STEP < ACCUMULATORS:
              vacc0123p${A} = vaddq_f32(vacc0123p${A}, vacc0123p${A + ACC_STEP});
          $ACC_STEP *= 2

      float32x4_t vacc0123 = vmaxq_f32(vacc0123p0, vmin);
      vacc0123 = vminq_f32(vacc0123, vmax);

      float32x2_t vacc01 = vget_low_f32(vacc0123);
      if (c & 2) {
        vst1_f32(output, vacc01); output += 2;
        vacc01 = vget_high_f32(vacc0123);
      }
      if (c & 1) {
        vst1_lane_f32(output, vacc01, 0); output += 1;
      }
    }

    output = (float*) ((uintptr_t) output + output_increment);
  } while (--output_width != 0);
}