File size: 1,251 Bytes
69c5ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from diffusers.utils import load_image
import cv2
from PIL import Image
import numpy as np
from diffusers import UniPCMultistepScheduler
from pipeline_onnx_stable_diffusion_controlnet import OnnxStableDiffusionControlNetPipeline
import onnxruntime as ort

image = load_image(
    "input_image_vermeer.png"
)

image = np.array(image)

low_threshold = 100
high_threshold = 200

image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

opts = ort.SessionOptions()
opts.enable_cpu_mem_arena = False
opts.enable_mem_pattern = False

pipe = OnnxStableDiffusionControlNetPipeline.from_pretrained(
    "model/sd1_5-fp16-vae_ft_mse-autoslicing-cn_canny",
    sess_options=opts, 
    provider="DmlExecutionProvider",
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
prompt = "jpop singer on stage, best quality, extremely detailed"
seed=42
generator = np.random.RandomState(seed)

images = pipe(
    prompt,
    canny_image,
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
    num_inference_steps=20,
    generator=generator,
).images[0]
images.save("controlnet-canny-test.png")