File size: 3,211 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <functional>
#include <limits>
#include <numeric>
#include <vector>
#include "bench/utils.h"
#include <benchmark/benchmark.h>
#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/gavgpool.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
void f32_gavgpool_cw(
benchmark::State& state,
xnn_f32_gavgpool_cw_ukernel_fn gavgpool_cw,
xnn_init_f32_gavgpool_params_fn init_params,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t channels = state.range(0);
const size_t elements = state.range(1);
std::vector<float, AlignedAllocator<float, 64>> input(elements * channels + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> output(channels);
std::iota(input.begin(), input.end(), 0.0f);
// Prepare parameters.
union xnn_f32_gavgpool_params params;
init_params(¶ms,
1.0f /* scale */, -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(), elements);
for (auto _ : state) {
gavgpool_cw(elements, channels, input.data(), output.data(), ¶ms);
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
}
static void BenchmarkBatch(benchmark::internal::Benchmark* b)
{
b->ArgNames({"channels", "elements"});
b->Args({1, 1024});
b->Args({2, 1024});
b->Args({4, 1024});
b->Args({6, 1024});
b->Args({8, 1024});
b->Args({16, 1024});
b->Args({1024, 1024});
}
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
BENCHMARK_CAPTURE(f32_gavgpool_cw, f32_neon_x4,
xnn_f32_gavgpool_cw_ukernel__neon_x4,
xnn_init_f32_gavgpool_params,
benchmark::utils::CheckNEON)
->Apply(BenchmarkBatch)
->UseRealTime();
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
BENCHMARK_CAPTURE(f32_gavgpool_cw, f32_sse_x4,
xnn_f32_gavgpool_cw_ukernel__sse_x4,
xnn_init_f32_gavgpool_params)
->Apply(BenchmarkBatch)
->UseRealTime();
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ARCH_WASMSIMD
BENCHMARK_CAPTURE(f32_gavgpool_cw, f32_wasmsimd_arm_x4,
xnn_f32_gavgpool_cw_ukernel__wasmsimd_arm_x4,
xnn_init_f32_gavgpool_params)
->Apply(BenchmarkBatch)
->UseRealTime();
BENCHMARK_CAPTURE(f32_gavgpool_cw, f32_wasmsimd_x86_x4,
xnn_f32_gavgpool_cw_ukernel__wasmsimd_x86_x4,
xnn_init_f32_gavgpool_params)
->Apply(BenchmarkBatch)
->UseRealTime();
#endif // XNN_ARCH_WASMSIMD
BENCHMARK_CAPTURE(f32_gavgpool_cw, f32_scalar_x1,
xnn_f32_gavgpool_cw_ukernel__scalar_x1,
xnn_init_scalar_f32_gavgpool_params)
->Apply(BenchmarkBatch)
->UseRealTime();
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif
|