File size: 10,010 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <random>
#include <vector>

#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/spmm.h"
#include "bench/utils.h"

#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/spmm.h>

static inline bool is_fp16_zero(uint16_t x) {
  const uint16_t two_x = x + x;
  return two_x == 0;
}

static void f16_spmm(benchmark::State& state,
  xnn_f16_spmm_minmax_ukernel_fn spmm, uint32_t mr, uint32_t nr, float sparsity,
  xnn_init_f16_minmax_params_fn init_params,
  benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
  if (isa_check && !isa_check(state)) {
    return;
  }
  const size_t mc = state.range(0);
  const size_t nc = state.range(1);
  const size_t kc = state.range(2);

  std::random_device random_device;
  auto rng = std::mt19937(random_device());
  std::uniform_real_distribution<float> f32dist;
  std::uniform_real_distribution<float> pdist;

  std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> input(kc * mc);
  // Think of b as (n/nr + n % nr) x k, expansion happens later.
  const size_t ncols = nc / nr + nc % nr;
  std::vector<uint16_t> b(ncols * kc);
  std::vector<uint16_t> bias(nc);
  // Number of non-zero weights per N (output channel).
  std::vector<uint32_t> nmap(nc);
  // Mapping from index of non-zero weight to increment of K (input channel) following this index.
  std::vector<int32_t> dmap(nc * kc);
  std::vector<uint16_t> w(nc * kc + nc);
  std::vector<uint16_t> output(nc * mc);

  std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
  std::generate(b.begin(), b.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
  std::generate(bias.begin(), bias.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
  std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
  std::fill(nmap.begin(), nmap.end(), 0);
  std::fill(dmap.begin(), dmap.end(), 0);
  std::fill(w.begin(), w.end(), 0);

  for (uint16_t& b_value : b) {
    if (pdist(rng) <= sparsity) {
      b_value = 0;
    }
  }

  uint32_t nnz = 0;
  uint32_t wcnt = 0;
  size_t last_kk = 0;
  bool first_nzz = true;
  size_t first_kk = 0;
  for (size_t nn = 0; nn < nc / nr; nn++) {
    for (size_t i = 0; i < nr; ++i)
      w[wcnt++] = bias[nr * nn + i];
    for (size_t kk = 0; kk < kc; kk++) {
      if (!is_fp16_zero(b[nn * kc + kk])) {
        // Every non-zero actually corresponds to nr adjacent non-zeros.
        for (size_t i = 0; i < nr; ++i)
          w[wcnt++] = fp16_ieee_from_fp32_value(fp16_ieee_to_fp32_value(b[nn * kc + kk]) + static_cast<float>(i));
        // Skip the very first non-zero weight as we record only the difference.
        if (first_nzz) {
          first_kk = kk;
        } else {
          const int32_t increment = int32_t(kk - last_kk) * int32_t(mc * sizeof(uint16_t));
          dmap[nnz++] = increment;
        }
        last_kk = kk;
        first_nzz = false;
        nmap[nn] += 1;
      }
    }
  }

  // now we've constructed the matrix for the blocked part and switch to the
  // leftovers, which we do as nr=1 always.
  for (size_t nn = nc / nr; nn < ncols; nn++) {
    w[wcnt++] = bias[(nc / nr) * nr + (nn - nc / nr)];
    for (size_t kk = 0; kk < kc; kk++) {
      if (!is_fp16_zero(b[nn * kc + kk])) {
        // Every non-zero actually corresponds to nr adjacent non-zeros.
        w[wcnt++] = b[nn * kc + kk];
        // Skip the very first non-zero weight as we record only the difference.
        if (first_nzz) {
          first_kk = kk;
        } else {
          const int32_t increment = int32_t(kk - last_kk) * int32_t(mc * sizeof(uint16_t));
          dmap[nnz++] = increment;
        }
        last_kk = kk;
        first_nzz = false;
        nmap[nn] += 1;
      }
    }
  }
  // In the end, we must return input pointer to the initial value.
  const int64_t increment = int32_t(first_kk - last_kk) * int32_t(mc * sizeof(uint16_t));
  dmap[nnz++] = increment;

  // Generate expanded b which will be used in reference calculation.
  // Everywhere there is input non-zero in the original we copy it and add an
  // adjacent non-zero with incremented weight value.
  std::vector<uint16_t> b_full(nc * kc);
  if (nr == 1) {
     b_full = b;
  }
  else {
    for (size_t nn = 0; nn < nc / nr; nn++) {
      for (size_t kk = 0; kk < kc; kk++) {
        if (b[nn * kc + kk] != 0.0f) {
          for (size_t i = 0; i < nr; ++i)
            b_full[nr * nn * kc + i * kc + kk] = fp16_ieee_from_fp32_value(
              fp16_ieee_to_fp32_value(b[nn * kc + kk]) + static_cast<float>(i));
        }
      }
    }
    for (size_t nn = nc / nr; nn < ncols; nn++) {
      for (size_t kk = 0; kk < kc; kk++) {
        if (b[nn * kc + kk] != 0.0f) {
          b_full[nr * (nc / nr) * kc + (nn - nc / nr) * kc + kk] = b[nn * kc + kk];
        }
      }
    }
  }

  // Micro-kernel can access one element beyond w and dmap for software pipelining.
  w.resize(wcnt + 1);
  dmap.resize(nnz + 1);

  // Prepare parameters.
  xnn_f16_minmax_params params;
  init_params(&params, 0xFC00 /* -inf */, 0x7C00 /* inf */);

  for (auto _ : state) {

    spmm(mc * sizeof(uint16_t), nc,
      input.data() + first_kk * mc,
      w.data(), dmap.data(), nmap.data(),
      output.data(), mc * sizeof(uint16_t),
      &params);
  }

  const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
  if (cpu_frequency != 0) {
    state.counters["cpufreq"] = cpu_frequency;
  }

  state.counters["FLOPS"] = benchmark::Counter(
    uint64_t(state.iterations()) * 2 * mc * nnz, benchmark::Counter::kIsRate);

  state.counters["EffFLOPS"] = benchmark::Counter(
    uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}

#if XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
  static void spmm80_8x1__neonfp16arith(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith, 8, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_8x1__neonfp16arith_pipelined(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith_pipelined, 8, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_8x1__neonfp16arith_x2(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith_x2, 8, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_16x1__neonfp16arith(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith, 16, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_16x1__neonfp16arith_pipelined(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith_pipelined, 16, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_16x1__neonfp16arith_x2(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith_x2, 16, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_24x1__neonfp16arith(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith, 24, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_24x1__neonfp16arith_pipelined(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith_pipelined, 24, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_24x1__neonfp16arith_x2(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith_x2, 24, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_32x1__neonfp16arith(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith, 32, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_32x1__neonfp16arith_pipelined(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith_pipelined, 32, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }
  static void spmm80_32x1__neonfp16arith_x2(benchmark::State& state, const char* net) {
    f16_spmm(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith_x2, 32, 1, 0.8f,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }

  BENCHMARK_SPMM(spmm80_8x1__neonfp16arith_pipelined)
  BENCHMARK_SPMM(spmm80_16x1__neonfp16arith_pipelined)
  BENCHMARK_SPMM(spmm80_24x1__neonfp16arith_pipelined)
  BENCHMARK_SPMM(spmm80_32x1__neonfp16arith_pipelined)
  BENCHMARK_SPMM(spmm80_8x1__neonfp16arith)
  BENCHMARK_SPMM(spmm80_16x1__neonfp16arith)
  BENCHMARK_SPMM(spmm80_24x1__neonfp16arith)
  BENCHMARK_SPMM(spmm80_32x1__neonfp16arith)
  BENCHMARK_SPMM(spmm80_8x1__neonfp16arith_x2)
  BENCHMARK_SPMM(spmm80_16x1__neonfp16arith_x2)
  BENCHMARK_SPMM(spmm80_24x1__neonfp16arith_x2)
  BENCHMARK_SPMM(spmm80_32x1__neonfp16arith_x2)
#endif  // XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)

#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif