File size: 13,317 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
// Auto-generated file. Do not edit!
// Template: src/f16-dwconv/unipass-fma3.c.in
// Generator: tools/xngen
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/intrinsics-polyfill.h>
void xnn_f16_dwconv_minmax_ukernel_4p32c__fma3_acc2(
size_t channels,
size_t output_width,
const void** input,
const void* weights,
void* output,
intptr_t input_stride,
size_t output_increment,
size_t input_offset,
const void* zero,
const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
const __m256 vmax = _mm256_load_ps(params->avx.max);
const __m256 vmin = _mm256_load_ps(params->avx.min);
uint16_t* o = (uint16_t*) output;
do {
const uint16_t* i0 = input[0];
assert(i0 != NULL);
if XNN_UNPREDICTABLE(i0 != zero) {
i0 = (const uint16_t*) ((uintptr_t) i0 + input_offset);
}
const uint16_t* i1 = input[1];
assert(i1 != NULL);
if XNN_UNPREDICTABLE(i1 != zero) {
i1 = (const uint16_t*) ((uintptr_t) i1 + input_offset);
}
const uint16_t* i2 = input[2];
assert(i2 != NULL);
if XNN_UNPREDICTABLE(i2 != zero) {
i2 = (const uint16_t*) ((uintptr_t) i2 + input_offset);
}
const uint16_t* i3 = input[3];
assert(i3 != NULL);
if XNN_UNPREDICTABLE(i3 != zero) {
i3 = (const uint16_t*) ((uintptr_t) i3 + input_offset);
}
input = (const void**) ((uintptr_t) input + input_stride);
size_t c = channels;
const uint16_t* w = weights;
for (; c >= 32; c -= 32) {
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
__m256 vacc89ABCDEFp0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 8)));
__m256 vaccGHIJKLMNp0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 16)));
__m256 vaccOPQRSTUVp0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 24)));
const __m256 vi0x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0));
const __m256 vi0x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i0 + 8)));
const __m256 vi0xGHIJKLMN = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i0 + 16)));
const __m256 vi0xOPQRSTUV = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i0 + 24)));
i0 += 32;
const __m256 vk0x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 32)));
const __m256 vk0x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 40)));
const __m256 vk0xGHIJKLMN = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 48)));
const __m256 vk0xOPQRSTUV = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 56)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0x01234567, vk0x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
vacc89ABCDEFp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0x89ABCDEF, vk0x89ABCDEF, vacc89ABCDEFp0), _MM_FROUND_TO_NEAREST_INT));
vaccGHIJKLMNp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0xGHIJKLMN, vk0xGHIJKLMN, vaccGHIJKLMNp0), _MM_FROUND_TO_NEAREST_INT));
vaccOPQRSTUVp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0xOPQRSTUV, vk0xOPQRSTUV, vaccOPQRSTUVp0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi1x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1));
const __m256 vi1x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i1 + 8)));
const __m256 vi1xGHIJKLMN = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i1 + 16)));
const __m256 vi1xOPQRSTUV = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i1 + 24)));
i1 += 32;
const __m256 vk1x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 64)));
const __m256 vk1x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 72)));
const __m256 vk1xGHIJKLMN = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 80)));
const __m256 vk1xOPQRSTUV = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 88)));
__m256 vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1x01234567, vk1x01234567), _MM_FROUND_TO_NEAREST_INT));
__m256 vacc89ABCDEFp1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1x89ABCDEF, vk1x89ABCDEF), _MM_FROUND_TO_NEAREST_INT));
__m256 vaccGHIJKLMNp1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1xGHIJKLMN, vk1xGHIJKLMN), _MM_FROUND_TO_NEAREST_INT));
__m256 vaccOPQRSTUVp1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1xOPQRSTUV, vk1xOPQRSTUV), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi2x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2));
const __m256 vi2x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i2 + 8)));
const __m256 vi2xGHIJKLMN = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i2 + 16)));
const __m256 vi2xOPQRSTUV = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i2 + 24)));
i2 += 32;
const __m256 vk2x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 96)));
const __m256 vk2x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 104)));
const __m256 vk2xGHIJKLMN = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 112)));
const __m256 vk2xOPQRSTUV = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 120)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2x01234567, vk2x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
vacc89ABCDEFp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2x89ABCDEF, vk2x89ABCDEF, vacc89ABCDEFp0), _MM_FROUND_TO_NEAREST_INT));
vaccGHIJKLMNp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2xGHIJKLMN, vk2xGHIJKLMN, vaccGHIJKLMNp0), _MM_FROUND_TO_NEAREST_INT));
vaccOPQRSTUVp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2xOPQRSTUV, vk2xOPQRSTUV, vaccOPQRSTUVp0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi3x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i3));
const __m256 vi3x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i3 + 8)));
const __m256 vi3xGHIJKLMN = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i3 + 16)));
const __m256 vi3xOPQRSTUV = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i3 + 24)));
i3 += 32;
const __m256 vk3x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 128)));
const __m256 vk3x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 136)));
const __m256 vk3xGHIJKLMN = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 144)));
const __m256 vk3xOPQRSTUV = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 152)));
vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3x01234567, vk3x01234567, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
vacc89ABCDEFp1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3x89ABCDEF, vk3x89ABCDEF, vacc89ABCDEFp1), _MM_FROUND_TO_NEAREST_INT));
vaccGHIJKLMNp1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3xGHIJKLMN, vk3xGHIJKLMN, vaccGHIJKLMNp1), _MM_FROUND_TO_NEAREST_INT));
vaccOPQRSTUVp1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3xOPQRSTUV, vk3xOPQRSTUV, vaccOPQRSTUVp1), _MM_FROUND_TO_NEAREST_INT));
w += 160;
// Add up all accumulators to vacc0123456789ABCDEFGHIJKLMNOPQRSTUVp0
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p0, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
vacc89ABCDEFp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc89ABCDEFp0, vacc89ABCDEFp1), _MM_FROUND_TO_NEAREST_INT));
vaccGHIJKLMNp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vaccGHIJKLMNp0, vaccGHIJKLMNp1), _MM_FROUND_TO_NEAREST_INT));
vaccOPQRSTUVp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vaccOPQRSTUVp0, vaccOPQRSTUVp1), _MM_FROUND_TO_NEAREST_INT));
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
__m256 vacc89ABCDEF = _mm256_max_ps(vacc89ABCDEFp0, vmin);
__m256 vaccGHIJKLMN = _mm256_max_ps(vaccGHIJKLMNp0, vmin);
__m256 vaccOPQRSTUV = _mm256_max_ps(vaccOPQRSTUVp0, vmin);
vacc01234567 = _mm256_min_ps(vacc01234567, vmax);
vacc89ABCDEF = _mm256_min_ps(vacc89ABCDEF, vmax);
vaccGHIJKLMN = _mm256_min_ps(vaccGHIJKLMN, vmax);
vaccOPQRSTUV = _mm256_min_ps(vaccOPQRSTUV, vmax);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT));
_mm_storeu_si128((__m128i*) (o + 8), _mm256_cvtps_ph(vacc89ABCDEF, _MM_FROUND_TO_NEAREST_INT));
_mm_storeu_si128((__m128i*) (o + 16), _mm256_cvtps_ph(vaccGHIJKLMN, _MM_FROUND_TO_NEAREST_INT));
_mm_storeu_si128((__m128i*) (o + 24), _mm256_cvtps_ph(vaccOPQRSTUV, _MM_FROUND_TO_NEAREST_INT));
o += 32;
}
for (; c >= 8; c -= 8) {
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
const __m256 vi0x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0));
i0 += 8;
const __m256 vk0x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 32)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0x01234567, vk0x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi1x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1));
i1 += 8;
const __m256 vk1x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 64)));
__m256 vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1x01234567, vk1x01234567), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi2x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2));
i2 += 8;
const __m256 vk2x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 96)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2x01234567, vk2x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi3x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i3));
i3 += 8;
const __m256 vk3x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 128)));
vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3x01234567, vk3x01234567, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
w += 8;
// Add up all accumulators to vacc01234567p0
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p0, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
vacc01234567 = _mm256_min_ps(vacc01234567, vmax);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT));
o += 8;
}
if XNN_UNLIKELY(c != 0) {
assert(c >= 1);
assert(c <= 7);
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
const __m256 vi0x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0));
const __m256 vk0x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 32)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0x01234567, vk0x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi1x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1));
const __m256 vk1x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 64)));
__m256 vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1x01234567, vk1x01234567), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi2x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2));
const __m256 vk2x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 96)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2x01234567, vk2x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi3x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i3));
const __m256 vk3x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 128)));
vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3x01234567, vk3x01234567, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
// Add up all accumulators to vacc01234567p0
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p0, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
vacc01234567 = _mm256_min_ps(vacc01234567, vmax);
__m128i vh01234567 = _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT);
if (c & 4) {
_mm_storel_epi64((__m128i*) o, vh01234567);
vh01234567 = _mm_unpackhi_epi64(vh01234567, vh01234567);
o += 4;
}
if (c & 2) {
_mm_storeu_si32(o, vh01234567);
vh01234567 = _mm_srli_epi64(vh01234567, 32);
o += 2;
}
if (c & 1) {
*o = (uint16_t) _mm_extract_epi16(vh01234567, 0);
o += 1;
}
}
o = (uint16_t*) ((uintptr_t) o + output_increment);
} while (--output_width != 0);
}
|