File size: 27,708 Bytes
40588a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# Copyright 2023 The InstructPix2Pix Authors and The HuggingFace Team.
# Converted for use with ONNX as part of https://github.com/Amblyopius/Stable-Diffusion-ONNX-FP16

import inspect
from typing import Callable, List, Optional, Union

import numpy as np
import PIL
import torch
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer

try:
    from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE
except ImportError:
    ORT_TO_NP_TYPE = {
        "tensor(bool)": np.bool_,
        "tensor(int8)": np.int8,
        "tensor(uint8)": np.uint8,
        "tensor(int16)": np.int16,
        "tensor(uint16)": np.uint16,
        "tensor(int32)": np.int32,
        "tensor(uint32)": np.uint32,
        "tensor(int64)": np.int64,
        "tensor(uint64)": np.uint64,
        "tensor(float16)": np.float16,
        "tensor(float)": np.float32,
        "tensor(double)": np.float64,
    }

from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, SchedulerMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import (
    PIL_INTERPOLATION,
    deprecate,
    logging,
    randn_tensor,
)
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# Simplified and ONNX specific version (only allows 1 image, np over torch)
def preprocess(image):
    if isinstance(image, np.ndarray):
        return image
        
    w, h = image.size
    w, h = map(lambda x: x - x % 8, (w, h))  # resize to integer multiple of 8
    image = np.array(image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
    image = np.array(image).astype(np.float32) / 255.0
    image = image.transpose(0, 3, 1, 2)
    image = 2.0 * image - 1.0
    return image


class OnnxStableDiffusionInstructPix2PixPipeline(DiffusionPipeline):
    r"""
    Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """
    vae_encoder: OnnxRuntimeModel
    vae_decoder: OnnxRuntimeModel
    text_encoder: OnnxRuntimeModel
    tokenizer: CLIPTokenizer
    unet: OnnxRuntimeModel
    scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
    safety_checker: OnnxRuntimeModel
    feature_extractor: CLIPFeatureExtractor
    _optional_components = ["safety_checker", "feature_extractor"]

    def __init__(
        self,
        vae_encoder: OnnxRuntimeModel,
        vae_decoder: OnnxRuntimeModel,
        text_encoder: OnnxRuntimeModel,
        tokenizer: CLIPTokenizer,
        unet: OnnxRuntimeModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: OnnxRuntimeModel,
        feature_extractor: CLIPFeatureExtractor,
        requires_safety_checker: bool = True,
    ):
        super().__init__()
        self.unet_in_channels = 8
        self.vae_scale_factor = 8

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.register_modules(
            vae_encoder=vae_encoder,
            vae_decoder=vae_decoder,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        #self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: Union[np.ndarray, PIL.Image.Image] = None,
        num_inference_steps: int = 100,
        guidance_scale: float = 7.5,
        image_guidance_scale: float = 1.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[np.random.RandomState] = None,
        latents: Optional[np.ndarray] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
        callback_steps: int = 1,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            image (`PIL.Image.Image`):
                `Image`, or tensor representing an image batch which will be repainted according to `prompt`.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality. This pipeline requires a value of at least `1`.
            image_guidance_scale (`float`, *optional*, defaults to 1.5):
                Image guidance scale is to push the generated image towards the inital image `image`. Image guidance
                scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to
                generate images that are closely linked to the source image `image`, usually at the expense of lower
                image quality. This pipeline requires a value of at least `1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale`
                is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Examples:

        ```py
        >>> import PIL
        >>> import requests
        >>> import torch
        >>> from io import BytesIO

        >>> from diffusers import StableDiffusionInstructPix2PixPipeline


        >>> def download_image(url):
        ...     response = requests.get(url)
        ...     return PIL.Image.open(BytesIO(response.content)).convert("RGB")


        >>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"

        >>> image = download_image(img_url).resize((512, 512))

        >>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
        ...     "timbrooks/instruct-pix2pix", torch_dtype=torch.float16
        ... )
        >>> pipe = pipe.to("cuda")

        >>> prompt = "make the mountains snowy"
        >>> image = pipe(prompt=prompt, image=image).images[0]
        ```

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        
        # We need a deterministic torch generator for schedulers if a (likely seeded) generator was provided
        
        if generator:
            torch_seed = generator.randint(2147483647)
            torch_gen = torch.Generator().manual_seed(torch_seed)
        else:
            generator = np.random
            torch_gen = None
        
        # 0. Check inputs
        self.check_inputs(prompt, callback_steps)

        if image is None:
            raise ValueError("`image` input cannot be undefined.")

        # 1. Define call parameters
        if isinstance(prompt, str):
            batch_size = 1
        elif isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0
        # check if scheduler is in sigmas space
        scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")

        # 2. Encode input prompt
        prompt_embeds = self._encode_prompt(
            prompt,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
        )

        # 3. Preprocess image
        image = preprocess(image)
        height, width = image.shape[-2:]

        # 4. set timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps = self.scheduler.timesteps

        # 5. Prepare Image latents
        latents_dtype = prompt_embeds.dtype
        image = image.astype(latents_dtype)
        # encode the init image into latents and scale the latents
        image_latents = self.vae_encoder(sample=image)[0]
        if do_classifier_free_guidance:
            uncond_image_latents = np.zeros_like(image_latents)
            image_latents = np.concatenate((image_latents, image_latents, uncond_image_latents), axis=0)

        # 6. Prepare latent variables
        latents_dtype = prompt_embeds.dtype
        latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
        if latents is None:
            latents = generator.randn(*latents_shape).astype(latents_dtype)
        elif latents.shape != latents_shape:
            raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
        latents = latents * self.scheduler.init_noise_sigma.numpy()

        # 7. Check that shapes of latents and image match the UNet channels
        num_channels_image = image_latents.shape[1]
        if 4+ num_channels_image != self.unet_in_channels:
            raise ValueError(
                f"Incorrect configuration settings! The config of `pipeline.unet`: expects"
                f" {self.unet_in_channels} but received `num_channels_latents`: {num_channels_latents} +"
                f" `num_channels_image`: {num_channels_image} "
                f" = {num_channels_latents+num_channels_image}. Please verify the config of"
                " `pipeline.unet` or your `image` input."
            )
            
        timestep_dtype = next(
            (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
        )
        timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]

        # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta, torch_gen)

        # 9. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # Expand the latents if we are doing classifier free guidance.
                # The latents are expanded 3 times because for pix2pix the guidance\
                # is applied for both the text and the input image.
                latent_model_input = np.concatenate([latents] * 3) if do_classifier_free_guidance else latents
                
                scaled_latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t)
                scaled_latent_model_input = scaled_latent_model_input.cpu().numpy()

                scaled_latent_model_input = np.concatenate([scaled_latent_model_input, image_latents], axis=1)

                # predict the noise residual
                             
                noise_pred = self.unet(
                    sample=scaled_latent_model_input,
                    timestep=np.array([t], dtype=timestep_dtype),
                    encoder_hidden_states=prompt_embeds,
                )[0]
                
                # Hack:
                # For karras style schedulers the model does classifer free guidance using the
                # predicted_original_sample instead of the noise_pred. So we need to compute the
                # predicted_original_sample here if we are using a karras style scheduler.
                if scheduler_is_in_sigma_space:
                    step_index = (self.scheduler.timesteps == t).nonzero().item()
                    sigma = self.scheduler.sigmas[step_index]
                    noise_pred = latent_model_input - sigma.numpy() * noise_pred

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_text, noise_pred_image, noise_pred_uncond = np.split(noise_pred, 3)
                    noise_pred = (
                        noise_pred_uncond
                        + guidance_scale * (noise_pred_text - noise_pred_image)
                        + image_guidance_scale * (noise_pred_image - noise_pred_uncond)
                    )

                # Hack:
                # For karras style schedulers the model does classifer free guidance using the
                # predicted_original_sample instead of the noise_pred. But the scheduler.step function
                # expects the noise_pred and computes the predicted_original_sample internally. So we
                # need to overwrite the noise_pred here such that the value of the computed
                # predicted_original_sample is correct.
                if scheduler_is_in_sigma_space:
                    noise_pred = (noise_pred - latents) / (-sigma)

                # compute the previous noisy sample x_t -> x_t-1
                scheduler_output = self.scheduler.step(
                    noise_pred, t, torch.from_numpy(latents), **extra_step_kwargs
                )
                latents = scheduler_output.prev_sample.numpy()

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents.numpy())

        # 10. Post-processing
        image = self.decode_latents(latents)

        # 11. Run safety checker
        image, has_nsfw_concept = self.run_safety_checker(image)

        # 12. Convert to PIL
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
        """
        negative_prompt_embeds = None
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        # get prompt text embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids

        if not np.array_equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]  
        prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt] * batch_size
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )
            negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
            negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            # pix2pix has two  negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]

            prompt_embeds = np.concatenate((prompt_embeds, negative_prompt_embeds, negative_prompt_embeds))

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(
                self.numpy_to_pil(image), return_tensors="np"
            ).pixel_values.astype(image.dtype)
            # safety_checker does not support batched inputs yet
            images, has_nsfw_concept = [], []
            for i in range(image.shape[0]):
                image_i, has_nsfw_concept_i = self.safety_checker(
                    clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
                )
                images.append(image_i)
                has_nsfw_concept.append(has_nsfw_concept_i[0])
            image = np.concatenate(images)
        else:
            has_nsfw_concept = None
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta, torch_gen):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = torch_gen
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        latents = 1 / 0.18215 * latents
        image = np.concatenate(
            [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
        )
        image = np.clip(image / 2 + 0.5, 0, 1)
        image = image.transpose((0, 2, 3, 1))
        return image

    def check_inputs(self, prompt, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )