File size: 9,640 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <cassert>
#include <cstddef>
#include <limits>

#include <xnnpack.h>
#include <xnnpack/aarch64-assembler.h>
#include <xnnpack/gemm.h>
#include <xnnpack/memory.h>
#include <xnnpack/microparams.h>
#include <xnnpack/post-operation.h>

namespace xnnpack {
namespace aarch64 {
namespace {
class Generator : public MacroAssembler {
  using MacroAssembler::MacroAssembler;

 public:
  void generate(bool prefetch, size_t max_mr, size_t nc_mod_nr, size_t kc, const jit_gemm_params* jit_gemm_params);
  void perform_post_operations(size_t max_mr, size_t num_post_operations, const xnn_post_operation* post_operations);
};

// void xnn_f32_gemm_minmax_ukernel_1x8__asm_aarch64_neonfma_cortex_a75_prfm(
//     size_t mr,                (x0) - unused.  mr = 1
//     size_t nc,                x1
//     size_t kc,                x2 / x0
//     const uint8_t* restrict a, x3
//     size_t a_stride,          (x4) - unused
//     const void* restrict w,    x5
//     uint8_t* restrict c,       x6
//     size_t cm_stride,         (x7) - unused
//     size_t cn_stride,         [sp] -> x14
//     const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])  [sp + 8] -> (x8)

// d8-d15, x19-x30 need to be preserved if used. x18 is reserved by the OS.

// Register usage
// A0  x3 v0 v1
// B   x5 v20 v21 v22 v23
// B      v24 v25 v26 v27
// C0  x6 v16 v17 v18 v19
// Clamp  v4, v5

// Converted from: src/f32-gemm/gen/f32-gemm-1x8-minmax-asm-aarch64-neonfma-cortex-a75-prfm.S
void Generator::generate(bool prefetch, size_t max_mr, size_t nc_mod_nr, size_t kc, const jit_gemm_params* jit_gemm_params)
{
  assert(max_mr <= 1);
  assert(nc_mod_nr < 8);
  assert(kc != 0);
  assert(kc % sizeof(float) == 0);

  Label l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12;
  const size_t num_post_operations = jit_gemm_params->num_post_operations;
  const xnn_post_operation* post_operations = jit_gemm_params->post_operations;
  const float min = jit_gemm_params->f32_minmax.min;
  const float max = jit_gemm_params->f32_minmax.max;
  const bool clamp_min = min != -std::numeric_limits<float>::infinity();
  const bool clamp_max = max != +std::numeric_limits<float>::infinity();
  assert(num_post_operations == 0 || (!clamp_min && !clamp_max));

  // Load cn_stride, params pointer
  ldp(x14, x8, mem[sp]);

  // Load min/max values
  if (clamp_min || clamp_max) {
    ld2r({v4.v4s(), v5.v4s()}, mem[x8]);
  }
  bind(l0);
  // Load initial bias from w into accumulators
  ldp(q16, q17, mem[x5], 32);

  movi(v18.v4s(), 0); // second set of C for pipelining FMLA
  if (prefetch) {
    prfm(kPLDL1KEEP, mem[x5]);
  }
  movi(v19.v4s(), 0);
  if (prefetch) {
    prfm(kPLDL1KEEP, mem[x5, 64]);
    prfm(kPLDL1KEEP, mem[x5, 128]);
    prfm(kPLDL1KEEP, mem[x5, 192]);
  }

  // Is there at least 8 floats (32 bytes) for prologue + epilogue?
  subs(x0, x2, 32); // k = kc - 32

  b_lo(l3);

  // 16 prologue
  // Read first block of 1 A and B.
  ldp(q20, q21, mem[x5], 32);
  ldp(q22, q23, mem[x5], 32);
  ldp(q24, q25, mem[x5], 32);
  ldp(q26, q27, mem[x5], 32);
  ldr(q0, mem[x3], 16);

  // Is there at least 32.  yes do main loop
  subs(x0, x0, 32);
  b_lo(l2);

  // Main loop - 8 floats of A (32 bytes)
  bind(l1);
  // First block of 4.  FMA for first 4, loads for 2nd block of 4.
  fmla(v16.v4s(), v20.v4s(), v0.s()[0]);
  ldr(q1, mem[x3], 16);
  fmla(v17.v4s(), v21.v4s(), v0.s()[0]);
  ldp(q20, q21, mem[x5], 32);
  fmla(v18.v4s(), v22.v4s(), v0.s()[1]);
  if (prefetch) {
    prfm(kPLDL1KEEP, mem[x5, 96]);
  }
  fmla(v19.v4s(), v23.v4s(), v0.s()[1]);
  ldp(q22, q23, mem[x5], 32);
  fmla(v16.v4s(), v24.v4s(), v0.s()[2]);
  fmla(v17.v4s(), v25.v4s(), v0.s()[2]);
  ldp(q24, q25, mem[x5], 32);
  fmla(v18.v4s(), v26.v4s(), v0.s()[3]);
  fmla(v19.v4s(), v27.v4s(), v0.s()[3]);
  ldp(q26, q27, mem[x5], 32);

  // Second block of 4.  FMA for second 4, loads for 1st block of 4.
  fmla(v16.v4s(), v20.v4s(), v1.s()[0]);
  ldr(q0, mem[x3], 16);
  fmla(v17.v4s(), v21.v4s(), v1.s()[0]);
  ldp(q20, q21, mem[x5], 32);
  fmla(v18.v4s(), v22.v4s(), v1.s()[1]);
  fmla(v19.v4s(), v23.v4s(), v1.s()[1]);
  ldp(q22, q23, mem[x5], 32);
  fmla(v16.v4s(), v24.v4s(), v1.s()[2]);
  fmla(v17.v4s(), v25.v4s(), v1.s()[2]);
  ldp(q24, q25, mem[x5], 32);
  fmla(v18.v4s(), v26.v4s(), v1.s()[3]);
  fmla(v19.v4s(), v27.v4s(), v1.s()[3]);
  subs(x0, x0, 32);
  ldp(q26, q27, mem[x5], 32);
  b_hs(l1);

  bind(l2);
  // Epilogue

  // First block of 4.  FMA for first 4, loads for 2nd block of 4.
  fmla(v16.v4s(), v20.v4s(), v0.s()[0]);
  ldr(q1, mem[x3], 16);
  fmla(v17.v4s(), v21.v4s(), v0.s()[0]);
  ldp(q20, q21, mem[x5], 32);
  fmla(v18.v4s(), v22.v4s(), v0.s()[1]);
  fmla(v19.v4s(), v23.v4s(), v0.s()[1]);
  ldp(q22, q23, mem[x5], 32);
  fmla(v16.v4s(), v24.v4s(), v0.s()[2]);
  fmla(v17.v4s(), v25.v4s(), v0.s()[2]);
  ldp(q24, q25, mem[x5], 32);
  fmla(v18.v4s(), v26.v4s(), v0.s()[3]);
  fmla(v19.v4s(), v27.v4s(), v0.s()[3]);
  ldp(q26, q27, mem[x5], 32);

  // Second block of 4.  no loads
  fmla(v16.v4s(), v20.v4s(), v1.s()[0]);
  fmla(v17.v4s(), v21.v4s(), v1.s()[0]);
  fmla(v18.v4s(), v22.v4s(), v1.s()[1]);
  fmla(v19.v4s(), v23.v4s(), v1.s()[1]);
  fmla(v16.v4s(), v24.v4s(), v1.s()[2]);
  fmla(v17.v4s(), v25.v4s(), v1.s()[2]);
  fmla(v18.v4s(), v26.v4s(), v1.s()[3]);
  fmla(v19.v4s(), v27.v4s(), v1.s()[3]);

  bind(l3);
  // Is there a remainder?- 4 floats of A (16 bytes)
  tbnz(x0, 4, l5);
  // Is there a remainder?- 2 floats of A (8 bytes)
  tbnz(x0, 3, l6);
  // Is there a remainder?- 1 float of A (4 bytes)
  tbnz(x0, 2, l8);

  bind(l4);
  fadd(v16.v4s(), v16.v4s(), v18.v4s());
  subs(x1, x1, 8);
  fadd(v17.v4s(), v17.v4s(), v19.v4s());

  // Clamp
  if (clamp_min) {
    fmax(v16.v4s(), v16.v4s(), v4.v4s());
    fmax(v17.v4s(), v17.v4s(), v4.v4s());
  }
  if (clamp_max) {
    fmin(v16.v4s(), v16.v4s(), v5.v4s());
    fmin(v17.v4s(), v17.v4s(), v5.v4s());
  }
  perform_post_operations(max_mr, num_post_operations, post_operations);

  // Store full 1 x 8
  b_lo(l9);

  stp(q16, q17, mem[x6]);
  add(x6, x6, x14);

  sub(x3, x3, x2); // a0 -= kc

  b_hi(l0);

  ret();

  bind(l5);
  // Remainder- 4 floats of A (16 bytes)
  ldp(q20, q21, mem[x5], 32);
  ldr(q0, mem[x3], 16);
  fmla(v16.v4s(), v20.v4s(), v0.s()[0]);
  fmla(v17.v4s(), v21.v4s(), v0.s()[0]);
  ldp(q22, q23, mem[x5], 32);
  ldp(q24, q25, mem[x5], 32);
  ldp(q26, q27, mem[x5], 32);
  fmla(v18.v4s(), v22.v4s(), v0.s()[1]);
  fmla(v19.v4s(), v23.v4s(), v0.s()[1]);
  fmla(v16.v4s(), v24.v4s(), v0.s()[2]);
  fmla(v17.v4s(), v25.v4s(), v0.s()[2]);
  fmla(v18.v4s(), v26.v4s(), v0.s()[3]);
  fmla(v19.v4s(), v27.v4s(), v0.s()[3]);

  tbz(x0, 3, l7);
  bind(l6);
  // Remainder- 2 floats of A (8 bytes)
  ldp(q20, q21, mem[x5], 32);
  ldr(d0, mem[x3], 8);
  fmla(v16.v4s(), v20.v4s(), v0.s()[0]);
  fmla(v17.v4s(), v21.v4s(), v0.s()[0]);
  ldp(q22, q23, mem[x5], 32);
  fmla(v18.v4s(), v22.v4s(), v0.s()[1]);
  fmla(v19.v4s(), v23.v4s(), v0.s()[1]);
  bind(l7);
  tbz(x0, 2, l4);
  bind(l8);
  // Remainder- 1 float of A (4 bytes)
  ldp(q20, q21, mem[x5], 32);
  ldr(s0, mem[x3], 4);
  fmla(v16.v4s(), v20.v4s(), v0.s()[0]);
  fmla(v17.v4s(), v21.v4s(), v0.s()[0]);
  b(l4);

  // Store odd channels
  bind(l9);
  tbz(x1, 2, l10);
  str(q16, mem[x6], 16);
  mov(v16.v16b(), v17.v16b());

  bind(l10);
  tbz(x1, 1, l11);
  str(d16, mem[x6], 8);
  dup(d16, v16.d()[1]);

  bind(l11);
  tbz(x1, 0, l12);
  str(s16, mem[x6]);
  bind(l12);
  ret();

  align(16, AlignInstruction::kHlt);
}

void Generator::perform_post_operations(
  size_t max_mr,
  size_t num_post_operations,
  const xnn_post_operation* post_operations)
{
  if (num_post_operations == 0) {
    return;
  }
  for (size_t i = 0; i < num_post_operations; i++) {
    switch (post_operations[i].op_type) {
      case xnn_post_operation_type_hardswish: {
        // Reuse A pointers (don't use v8-v15 as they are callee saved).
        const auto sixth = v0.v4s();
        const auto three = v1.v4s();
        const auto six = v2.v4s();
        const auto zero = v3.v4s();
        // v4, v5, v6, v7 available for temporaries.
        ld3r({sixth, three, six}, mem[x8]++);
        movi(zero, 0);
        const VRegister accs[] = {
          v16.v4s(), v17.v4s(),
        };
        const VRegister tmps[] = {v4.v4s(), v5.v4s()};
        f32_hardswish(sixth, three, six, zero, &accs[0], XNN_COUNT_OF(accs), &tmps[0], XNN_COUNT_OF(tmps));
        break;
      }
      default:
        XNN_UNREACHABLE;
    }
  }
}

}  // namespace
}  // namespace aarch64
}  // namespace xnnpack

xnn_status_t xnn_generate_f32_gemm_ukernel_1x8__aarch64_neonfma_cortex_a75(xnn_code_buffer* code, size_t max_mr, size_t nc_mod_nr, size_t kc, const void* params) {
  using namespace xnnpack::aarch64;
  Generator g(code);
  assert(params != nullptr);
  g.generate(false, max_mr, nc_mod_nr, kc, static_cast<const jit_gemm_params*>(params));
  g.finalize();
  if (g.error() != xnnpack::Error::kNoError) {
    return xnn_status_invalid_state;
  }
  return xnn_status_success;
}

xnn_status_t xnn_generate_f32_gemm_ukernel_1x8__aarch64_neonfma_cortex_a75_prfm(xnn_code_buffer* code, size_t max_mr, size_t nc_mod_nr, size_t kc, const void* params) {
  using namespace xnnpack::aarch64;
  Generator g(code);
  assert(params != nullptr);
  g.generate(true, max_mr, nc_mod_nr, kc, static_cast<const jit_gemm_params*>(params));
  g.finalize();
  if (g.error() != xnnpack::Error::kNoError) {
    return xnn_status_invalid_state;
  }
  return xnn_status_success;
}