File size: 8,815 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <stdbool.h>
#include <math.h>  // For INFINITY

#include <xnnpack/common.h>

#if XNN_PLATFORM_WINDOWS
  #include <windows.h>

  #ifndef PF_ARM_V82_DP_INSTRUCTIONS_AVAILABLE
    #define PF_ARM_V82_DP_INSTRUCTIONS_AVAILABLE 43
  #endif
#else
  #include <pthread.h>
#endif

#if !XNN_PLATFORM_WEB
  #include <cpuinfo.h>
#endif

#if XNN_ARCH_RISCV
  #include <sys/auxv.h>

  #define COMPAT_HWCAP_ISA_V (1 << ('V' - 'A'))
#endif

#if XNN_ARCH_WASMRELAXEDSIMD
  #include <wasm_simd128.h>
#endif

#include <xnnpack/config.h>
#include <xnnpack/log.h>


static struct xnn_hardware_config hardware_config = {0};

#if XNN_PLATFORM_WINDOWS
  static INIT_ONCE init_guard = INIT_ONCE_STATIC_INIT;
#else
  static pthread_once_t init_guard = PTHREAD_ONCE_INIT;
#endif

static void init_hardware_config(void) {
  #if XNN_ARCH_ARM
    hardware_config.use_arm_v6 = cpuinfo_has_arm_v6();
    hardware_config.use_arm_vfpv2 = cpuinfo_has_arm_vfpv2();
    hardware_config.use_arm_vfpv3 = cpuinfo_has_arm_vfpv3();
    hardware_config.use_arm_neon = cpuinfo_has_arm_neon();
    hardware_config.use_arm_neon_fp16 = cpuinfo_has_arm_neon_fp16();
    hardware_config.use_arm_neon_fma = cpuinfo_has_arm_neon_fma();
    hardware_config.use_arm_neon_v8 = cpuinfo_has_arm_neon_v8();
  #endif

  #if XNN_ARCH_ARM64 || XNN_ARCH_ARM
    #if XNN_PLATFORM_WINDOWS
      SYSTEM_INFO system_info;
      GetSystemInfo(&system_info);
      switch (system_info.wProcessorLevel) {
        case 0x803:  // Kryo 385 Silver
          hardware_config.use_arm_neon_fp16_arith = true;
          break;
        default:
          // Assume that Dot Product support implies FP16 support.
          // ARM manuals don't guarantee that, but it holds in practice.
          hardware_config.use_arm_neon_fp16_arith = !!IsProcessorFeaturePresent(PF_ARM_V82_DP_INSTRUCTIONS_AVAILABLE);
          break;
      }
      hardware_config.use_arm_fp16_arith = hardware_config.use_arm_neon_fp16_arith;

      hardware_config.use_arm_neon_bf16 = false;
      hardware_config.use_arm_neon_dot = !!IsProcessorFeaturePresent(PF_ARM_V82_DP_INSTRUCTIONS_AVAILABLE);
    #else
      hardware_config.use_arm_fp16_arith = cpuinfo_has_arm_fp16_arith();
      hardware_config.use_arm_neon_fp16_arith = cpuinfo_has_arm_neon_fp16_arith();
      hardware_config.use_arm_neon_bf16 = cpuinfo_has_arm_neon_bf16();
      hardware_config.use_arm_neon_dot = cpuinfo_has_arm_neon_dot();
    #endif
  #endif

  #if XNN_ARCH_X86 || XNN_ARCH_X86_64
    hardware_config.use_x86_ssse3 = cpuinfo_has_x86_ssse3();
    hardware_config.use_x86_sse4_1 = cpuinfo_has_x86_sse4_1();
    hardware_config.use_x86_avx = cpuinfo_has_x86_avx();
    hardware_config.use_x86_f16c = cpuinfo_has_x86_f16c();
    hardware_config.use_x86_fma3 = cpuinfo_has_x86_fma3();
    hardware_config.use_x86_xop = cpuinfo_has_x86_xop();
    hardware_config.use_x86_avx2 = cpuinfo_has_x86_avx2();
    hardware_config.use_x86_avx512f = cpuinfo_has_x86_avx512f();
    hardware_config.use_x86_avx512skx = hardware_config.use_x86_avx512f &&
      cpuinfo_has_x86_avx512bw() && cpuinfo_has_x86_avx512dq() && cpuinfo_has_x86_avx512vl();
    hardware_config.use_x86_avx512vbmi = hardware_config.use_x86_avx512skx && cpuinfo_has_x86_avx512vbmi();
  #endif  // !XNN_ARCH_X86 && !XNN_ARCH_X86_64

  #if XNN_ARCH_RISCV
    const long hwcap = getauxval(AT_HWCAP);
    xnn_log_debug("getauxval(AT_HWCAP) = %08lX", hwcap);
    hardware_config.use_riscv_vector = (hwcap & COMPAT_HWCAP_ISA_V) != 0;

    if (hardware_config.use_riscv_vector) {
      register uint32_t vlenb __asm__ ("t0");
      __asm__(".word 0xC22022F3"  /* CSRR t0, vlenb */ : "=r" (vlenb));
      hardware_config.vlenb = vlenb;
      xnn_log_info("RISC-V VLENB: %" PRIu32, vlenb);
    }
  #endif

  #if XNN_ARCH_WASM || XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
    // Unlike most other architectures, on x86/x86-64 when floating-point instructions
    // have no NaN arguments, but produce NaN output, the output NaN has sign bit set.
    // We use it to distinguish x86/x86-64 from other architectures, by doing subtraction
    // of two infinities (must produce NaN per IEEE 754 standard).
    static const volatile float inf = INFINITY;
    hardware_config.is_x86 = signbit(inf - inf);
  #endif  // XNN_ARCH_WASM || XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD

  #if XNN_ARCH_WASMRELAXEDSIMD
    {
      // Check if out-of-bounds behavior of Relaxed Swizzle is consistent with PSHUFB.
      const v128_t table = wasm_i8x16_const(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
      const v128_t index_mask = wasm_i8x16_const_splat(INT8_C(0x8F));
      const volatile v128_t index_increment = wasm_i8x16_const_splat(16);  // volatile to confuse Clang which otherwise mis-compiles
      v128_t index = wasm_i8x16_const(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
      v128_t diff = wasm_i8x16_const_splat(0);
      for (uint32_t i = 16; i != 0; i--) {
        const v128_t pshufb_result = wasm_i8x16_swizzle(table, wasm_v128_and(index, index_mask));
        const v128_t relaxed_result = wasm_i8x16_relaxed_swizzle(table, index);
        diff = wasm_v128_or(diff, wasm_v128_xor(pshufb_result, relaxed_result));
        index = wasm_i8x16_add(index, index_increment);
      }
      hardware_config.use_wasm_pshufb = !wasm_v128_any_true(diff);
    }

    {
      // Check out-of-bounds behaviour of Relaxed Integer Dot Product with Accumulation.
      const v128_t int8_input = wasm_i8x16_const(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0);
      const volatile v128_t xint8_input = wasm_i8x16_const(0, 0, 0, -128, 0, 0, -128, 0, 0, -128, 0, 0, -128, 0, 0, 0);  // volatile to confuse Clang which otherwise ICE's
      const v128_t xint8_output = wasm_i32x4_relaxed_dot_i8x16_i7x16_add(int8_input, xint8_input, wasm_i8x16_const_splat(0));

      const volatile v128_t overflow_input = wasm_i8x16_const(-128, -128, -128, -128, -128, -128, -1, -1, -1, -1, -128, -128, -1, -1, -1, -1);  // volatile to confuse Clang which otherwise ICE's
      const v128_t overflow_output = wasm_i32x4_relaxed_dot_i8x16_i7x16_add(wasm_i8x16_const_splat(-128), overflow_input, wasm_i8x16_const_splat(0));
      hardware_config.use_wasm_sdot = !wasm_v128_any_true(wasm_v128_or(
        wasm_v128_xor(xint8_output, wasm_i32x4_const_splat(-128)),
        wasm_v128_xor(overflow_output, wasm_i32x4_const(65536, 33024, 33024, 512))));
    }
    {
      const v128_t input1 = wasm_i32x4_const(0xF0F0F0F0, 0xAAAAAAAA, 0xCCCCCCCC, 0x99999999);
      const v128_t input2 = wasm_i32x4_const(0x0F0F0F0F, 0x55555555, 0x33333333, 0x66666666);
      v128_t diff = wasm_i8x16_const_splat(0);
      for (uint32_t shift = 0; shift < 32; ++shift) {
        const uint32_t mask = UINT32_C(1) << shift;
        const volatile v128_t vmask = wasm_u32x4_splat(mask);
        const v128_t blendvps_result = wasm_v128_bitselect(input1, input2, wasm_i32x4_shr(vmask, 31));
        const v128_t relaxed_result = wasm_i32x4_relaxed_laneselect(input1, input2, vmask);
        diff = wasm_v128_or(diff, wasm_v128_xor(blendvps_result, relaxed_result));
      }
      hardware_config.use_wasm_blendvps = !wasm_v128_any_true(diff);
    }
  #endif  // XNN_ARCH_WASMRELAXEDSIMD
}

#if XNN_PLATFORM_WINDOWS
  static BOOL CALLBACK init_hardware_config_windows(PINIT_ONCE init_once, PVOID parameter, PVOID* context) {
    init_hardware_config();
    return TRUE;
  }
#endif

const struct xnn_hardware_config* xnn_init_hardware_config() {
  #if !XNN_PLATFORM_WEB && !XNN_ARCH_RISCV && !(XNN_ARCH_ARM64 && XNN_PLATFORM_WINDOWS)
    if (!cpuinfo_initialize()) {
      xnn_log_error("failed to initialize cpuinfo");
      return NULL;
    }
  #endif  // !XNN_PLATFORM_WEB && !XNN_ARCH_RISCV && !(XNN_ARCH_ARM64 && XNN_PLATFORM_WINDOWS)
  #if XNN_ARCH_ARM
    #if XNN_PLATFORM_MOBILE
      if (!cpuinfo_has_arm_neon()) {
        xnn_log_debug("unsupported hardware: ARM NEON not detected");
        return NULL;
      }
    #else
      if (!cpuinfo_has_arm_v6()) {
        xnn_log_debug("unsupported hardware: ARMv6 not detected");
        return NULL;
      }

      if (!cpuinfo_has_arm_vfpv2() && !cpuinfo_has_arm_vfpv3()) {
        xnn_log_debug("unsupported hardware: VFP FPU not detected");
        return NULL;
      }
    #endif
  #endif  // XNN_ARCH_ARM
  #if XNN_ARCH_X86
    if (!cpuinfo_has_x86_sse2()) {
      xnn_log_debug("unsupported hardware: SSE2 not detected");
      return NULL;
    }
  #endif  // XNN_ARCH_X86

  #if XNN_PLATFORM_WINDOWS
    InitOnceExecuteOnce(&init_guard, &init_hardware_config_windows, NULL, NULL);
  #else
    pthread_once(&init_guard, &init_hardware_config);
  #endif
  return &hardware_config;
}