File size: 3,755 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <functional>
#include <random>
#include <vector>
#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/utils.h"
#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/vunary.h>
static void f16_velu(
benchmark::State& state,
xnn_f16_velu_ukernel_fn elu,
xnn_init_f16_elu_params_fn init_params,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check && !isa_check(state)) {
return;
}
const size_t num_elements = state.range(0);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-9.0f, 9.0f), std::ref(rng));
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> x(num_elements);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> y(num_elements);
std::generate(x.begin(), x.end(), std::ref(f16rng));
std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
union xnn_f16_elu_params params;
init_params(¶ms,
UINT16_C(0x3C00) /* prescale = 1.0h */,
UINT16_C(0x3C00) /* alpha = 1.0h */,
UINT16_C(0x3C00) /* beta = 1.0h */);
for (auto _ : state) {
elu(num_elements * sizeof(uint16_t), x.data(), y.data(), ¶ms);
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = num_elements;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * num_elements * sizeof(uint16_t);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
#if XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
BENCHMARK_CAPTURE(f16_velu, neonfp16arith_rr1_p3_x8,
xnn_f16_velu_ukernel__neonfp16arith_rr1_p3_x8,
xnn_init_f16_elu_fp16arith_rr1_p3_params,
benchmark::utils::CheckNEONFP16ARITH)
->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_velu, neonfp16arith_rr1_p3_x16,
xnn_f16_velu_ukernel__neonfp16arith_rr1_p3_x16,
xnn_init_f16_elu_fp16arith_rr1_p3_params,
benchmark::utils::CheckNEONFP16ARITH)
->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>)
->UseRealTime();
#endif // XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
BENCHMARK_CAPTURE(f16_velu, avx2_rr1_p3_x8,
xnn_f16_velu_ukernel__avx2_rr1_p3_x8,
xnn_init_f16_elu_avx2_rr1_p3_params,
benchmark::utils::CheckAVX2)
->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>)
->UseRealTime();
BENCHMARK_CAPTURE(f16_velu, avx2_rr1_p3_x16,
xnn_f16_velu_ukernel__avx2_rr1_p3_x16,
xnn_init_f16_elu_avx2_rr1_p3_params,
benchmark::utils::CheckAVX2)
->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>)
->UseRealTime();
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif
|