File size: 5,199 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert (P, H) == (19, 9)
$assert FMA in [0, 3]
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$SIMD_TILE = BATCH_TILE // 8
#include <assert.h>
#include <stddef.h>
#include <math.h>
#include <immintrin.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/microparams.h>
#include <xnnpack/vunary.h>
$POLY_SUFFIX = "p%dh%dt2" % (P, H)
$PARAMS_STRUCT = "avx_polynomial_" + POLY_SUFFIX
$ISA = "fma3" if FMA else "f16c"
void xnn_f16_vtanh_ukernel__${ISA}_polynomial_${POLY_SUFFIX}_x${BATCH_TILE}(
size_t batch,
const void* input,
void* output,
const union xnn_f16_tanh_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(batch != 0);
assert(batch % sizeof(uint16_t) == 0);
assert(input != NULL);
assert(output != NULL);
const __m256 vneg_sat_cutoff = _mm256_load_ps(params->${PARAMS_STRUCT}.neg_sat_cutoff);
const __m256 vpos_sat_cutoff = _mm256_load_ps(params->${PARAMS_STRUCT}.pos_sat_cutoff);
$for i in reversed(range(3, P+1, 2)):
const __m256 vc${i} = _mm256_load_ps(params->${PARAMS_STRUCT}.c${i});
const uint16_t* i = (const uint16_t*) input;
uint16_t* o = (uint16_t*) output;
$if BATCH_TILE > 8:
for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) {
__m256 vx0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
$for N in range(1, SIMD_TILE):
__m256 vx${N} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8})));
i += ${BATCH_TILE};
$for N in range(SIMD_TILE):
vx${N} = _mm256_max_ps(vneg_sat_cutoff, vx${N});
$for N in range(SIMD_TILE):
vx${N} = _mm256_min_ps(vpos_sat_cutoff, vx${N});
$for N in range(SIMD_TILE):
const __m256 vt${N} = _mm256_mul_ps(vx${N}, vx${N});
$if FMA == 3:
$for N in range(SIMD_TILE):
__m256 vp${N} = vc${P};
$for i in reversed(range(3, P, 2)):
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc${i});
$else:
$for N in range(SIMD_TILE):
__m256 vp${N} = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt${N}), vc${P-2});
$for i in reversed(range(3, P-2, 2)):
$for N in range(SIMD_TILE):
vp${N} = _mm256_add_ps(_mm256_mul_ps(vp${N}, vt${N}), vc${i});
$for N in range(SIMD_TILE):
const __m256 vxt${N} = _mm256_mul_ps(vx${N}, vt${N});
$for N in range(SIMD_TILE):
$if FMA == 3:
const __m256 vy${N} = _mm256_fmadd_ps(vp${N}, vxt${N}, vx${N});
$else:
const __m256 vy${N} = _mm256_add_ps(_mm256_mul_ps(vp${N}, vxt${N}), vx${N});
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy0, _MM_FROUND_TO_NEAREST_INT));
$for N in range(1, SIMD_TILE):
_mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vy${N}, _MM_FROUND_TO_NEAREST_INT));
o += ${BATCH_TILE};
}
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
__m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
i += 8;
vx = _mm256_max_ps(vneg_sat_cutoff, vx);
vx = _mm256_min_ps(vpos_sat_cutoff, vx);
const __m256 vt = _mm256_mul_ps(vx, vx);
$if FMA == 3:
__m256 vp = vc${P};
$for i in reversed(range(3, P, 2)):
vp = _mm256_fmadd_ps(vp, vt, vc${i});
$else:
__m256 vp = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt), vc${P-2});
$for i in reversed(range(3, P-2, 2)):
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc${i});
const __m256 vxt = _mm256_mul_ps(vx, vt);
$if FMA == 3:
const __m256 vy = _mm256_fmadd_ps(vp, vxt, vx);
$else:
const __m256 vy = _mm256_add_ps(_mm256_mul_ps(vp, vxt), vx);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT));
o += 8;
}
if (batch != 0) {
__m256 vx = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) i));
vx = _mm256_max_ps(vneg_sat_cutoff, vx);
vx = _mm256_min_ps(vpos_sat_cutoff, vx);
const __m256 vt = _mm256_mul_ps(vx, vx);
$if FMA == 3:
__m256 vp = vc${P};
$for i in reversed(range(3, P, 2)):
vp = _mm256_fmadd_ps(vp, vt, vc${i});
$else:
__m256 vp = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt), vc${P-2});
$for i in reversed(range(3, P-2, 2)):
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc${i});
const __m256 vxt = _mm256_mul_ps(vx, vt);
$if FMA == 3:
const __m256 vy = _mm256_fmadd_ps(vp, vxt, vx);
$else:
const __m256 vy = _mm256_add_ps(_mm256_mul_ps(vp, vxt), vx);
__m128i vh = _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT);
if (batch & (4 * sizeof(uint16_t))) {
_mm_storel_epi64((__m128i*) o, vh);
vh = _mm_unpackhi_epi64(vh, vh);
o += 4;
}
if (batch & (2 * sizeof(uint16_t))) {
_mm_storeu_si32(o, vh);
vh = _mm_srli_epi64(vh, 32);
o += 2;
}
if (batch & (1 * sizeof(uint16_t))) {
*o = (uint16_t) _mm_extract_epi16(vh, 0);
}
}
}
|