File size: 5,199 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

$assert (P, H) == (19, 9)
$assert FMA in [0, 3]
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$SIMD_TILE = BATCH_TILE // 8
#include <assert.h>
#include <stddef.h>
#include <math.h>

#include <immintrin.h>

#include <immintrin.h>

#include <xnnpack/common.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/microparams.h>
#include <xnnpack/vunary.h>


$POLY_SUFFIX = "p%dh%dt2" % (P, H)
$PARAMS_STRUCT = "avx_polynomial_" + POLY_SUFFIX
$ISA = "fma3" if FMA else "f16c"
void xnn_f16_vtanh_ukernel__${ISA}_polynomial_${POLY_SUFFIX}_x${BATCH_TILE}(
    size_t batch,
    const void* input,
    void* output,
    const union xnn_f16_tanh_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
  assert(batch != 0);
  assert(batch % sizeof(uint16_t) == 0);
  assert(input != NULL);
  assert(output != NULL);


  const __m256 vneg_sat_cutoff = _mm256_load_ps(params->${PARAMS_STRUCT}.neg_sat_cutoff);
  const __m256 vpos_sat_cutoff = _mm256_load_ps(params->${PARAMS_STRUCT}.pos_sat_cutoff);
  $for i in reversed(range(3, P+1, 2)):
    const __m256 vc${i} = _mm256_load_ps(params->${PARAMS_STRUCT}.c${i});

  const uint16_t* i = (const uint16_t*) input;
  uint16_t* o = (uint16_t*) output;
  $if BATCH_TILE > 8:
    for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) {
      __m256 vx0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
      $for N in range(1, SIMD_TILE):
        __m256 vx${N} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8})));
      i += ${BATCH_TILE};

      $for N in range(SIMD_TILE):
        vx${N} = _mm256_max_ps(vneg_sat_cutoff, vx${N});
      $for N in range(SIMD_TILE):
        vx${N} = _mm256_min_ps(vpos_sat_cutoff, vx${N});

      $for N in range(SIMD_TILE):
        const __m256 vt${N} = _mm256_mul_ps(vx${N}, vx${N});

      $if FMA == 3:
        $for N in range(SIMD_TILE):
          __m256 vp${N} = vc${P};
        $for i in reversed(range(3, P, 2)):
          $for N in range(SIMD_TILE):
            vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc${i});
      $else:
        $for N in range(SIMD_TILE):
          __m256 vp${N} = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt${N}), vc${P-2});
        $for i in reversed(range(3, P-2, 2)):
          $for N in range(SIMD_TILE):
            vp${N} = _mm256_add_ps(_mm256_mul_ps(vp${N}, vt${N}), vc${i});

      $for N in range(SIMD_TILE):
        const __m256 vxt${N} = _mm256_mul_ps(vx${N}, vt${N});
      $for N in range(SIMD_TILE):
        $if FMA == 3:
          const __m256 vy${N} = _mm256_fmadd_ps(vp${N}, vxt${N}, vx${N});
        $else:
          const __m256 vy${N} = _mm256_add_ps(_mm256_mul_ps(vp${N}, vxt${N}), vx${N});

      _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy0, _MM_FROUND_TO_NEAREST_INT));
      $for N in range(1, SIMD_TILE):
        _mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vy${N}, _MM_FROUND_TO_NEAREST_INT));
      o += ${BATCH_TILE};
    }
  for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
    __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
    i += 8;

    vx = _mm256_max_ps(vneg_sat_cutoff, vx);
    vx = _mm256_min_ps(vpos_sat_cutoff, vx);

    const __m256 vt = _mm256_mul_ps(vx, vx);

    $if FMA == 3:
      __m256 vp = vc${P};
      $for i in reversed(range(3, P, 2)):
        vp = _mm256_fmadd_ps(vp, vt, vc${i});
    $else:
      __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt), vc${P-2});
      $for i in reversed(range(3, P-2, 2)):
        vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc${i});

    const __m256 vxt = _mm256_mul_ps(vx, vt);
    $if FMA == 3:
      const __m256 vy = _mm256_fmadd_ps(vp, vxt, vx);
    $else:
      const __m256 vy = _mm256_add_ps(_mm256_mul_ps(vp, vxt), vx);

    _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT));
    o += 8;
  }
  if (batch != 0) {
    __m256 vx = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) i));

    vx = _mm256_max_ps(vneg_sat_cutoff, vx);
    vx = _mm256_min_ps(vpos_sat_cutoff, vx);

    const __m256 vt = _mm256_mul_ps(vx, vx);

    $if FMA == 3:
      __m256 vp = vc${P};
      $for i in reversed(range(3, P, 2)):
        vp = _mm256_fmadd_ps(vp, vt, vc${i});
    $else:
      __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt), vc${P-2});
      $for i in reversed(range(3, P-2, 2)):
        vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc${i});

    const __m256 vxt = _mm256_mul_ps(vx, vt);
    $if FMA == 3:
      const __m256 vy = _mm256_fmadd_ps(vp, vxt, vx);
    $else:
      const __m256 vy = _mm256_add_ps(_mm256_mul_ps(vp, vxt), vx);

    __m128i vh = _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT);

    if (batch & (4 * sizeof(uint16_t))) {
      _mm_storel_epi64((__m128i*) o, vh);
      vh = _mm_unpackhi_epi64(vh, vh);
      o += 4;
    }
    if (batch & (2 * sizeof(uint16_t))) {
      _mm_storeu_si32(o, vh);
      vh = _mm_srli_epi64(vh, 32);
      o += 2;
    }
    if (batch & (1 * sizeof(uint16_t))) {
      *o = (uint16_t) _mm_extract_epi16(vh, 0);
    }
  }
}