File size: 9,458 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert ROW_TILE >= 3
$assert ROW_SUBTILE >= 3
$assert ROW_SUBTILE <= ROW_TILE
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/gavgpool.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/math.h>
void xnn_f16_gavgpool_minmax_ukernel_${ROW_TILE}p${ROW_SUBTILE}x__f16c_c${CHANNEL_TILE}(
size_t rows,
size_t channels,
const void* input,
size_t input_stride,
const void* zero,
void* buffer,
void* output,
const union xnn_f16_scaleminmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(rows > ${ROW_TILE});
assert(channels != 0);
const uint16_t* i0 = input;
$for M in range(1, ROW_TILE):
const uint16_t* i${M} = (const uint16_t*) ((uintptr_t) i${M-1} + input_stride);
const size_t input_increment = ${ROW_TILE} * input_stride - round_up_po2(channels, 8) * sizeof(uint16_t);
uint16_t* b = buffer;
size_t c = channels;
for (; ${"c >= %d" % CHANNEL_TILE if CHANNEL_TILE > 8 else "c != 0"}; ${("c -= %d" if CHANNEL_TILE > 8 else "c = doz(c, %d)") % CHANNEL_TILE}) {
$for M in range(2):
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vi${M}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M})); i${M} += 8;
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vi2x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2)); i2 += 8;
__m128i vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(vi0x${ABC[C:C+8]}, vi1x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT);
$for M in range(2, ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vi${M}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT);
$for C in range(0, CHANNEL_TILE, 8):
_mm_store_si128((__m128i*) b, vacc${ABC[C:C+8]}); b += 8;
}
$if CHANNEL_TILE > 8:
if XNN_UNLIKELY(c != 0) {
do {
$for M in range(3):
const __m256 vi${M}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M})); i${M} += 8;
__m128i vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(vi0x${ABC[0:8]}, vi1x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT);
$for M in range(2, ROW_TILE):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vi${M}x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT);
_mm_store_si128((__m128i*) b, vacc${ABC[0:8]}); b += 8;
c = doz(c, 8);
} while (c != 0);
}
for (rows -= ${ROW_TILE}; rows > ${ROW_SUBTILE}; rows -= ${ROW_SUBTILE}) {
$for M in range(ROW_SUBTILE):
i${M} = (const uint16_t*) ((uintptr_t) i${M + ROW_TILE - ROW_SUBTILE} + input_increment);
uint16_t* b = buffer;
size_t c = channels;
for (; ${"c >= %d" % CHANNEL_TILE if CHANNEL_TILE > 8 else "c != 0"}; ${("c -= %d" if CHANNEL_TILE > 8 else "c = doz(c, %d)") % CHANNEL_TILE}) {
__m128i vacc${ABC[0:8]} = _mm_loadu_si128((const __m128i*) b);
$for C in range(8, CHANNEL_TILE, 8):
__m128i vacc${ABC[C:C+8]} = _mm_loadu_si128((const __m128i*) (b + ${C}));
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vi0x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8;
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vi${M}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT);
$for C in range(0, CHANNEL_TILE, 8):
_mm_store_si128((__m128i*) b, vacc${ABC[C:C+8]}); b += 8;
}
$if CHANNEL_TILE > 8:
if XNN_UNLIKELY(c != 0) {
do {
__m128i vacc${ABC[0:8]} = _mm_loadu_si128((const __m128i*) b);
const __m256 vi0x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8;
$for M in range(ROW_TILE):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vi${M}x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT);
_mm_store_si128((__m128i*) b, vacc${ABC[0:8]});
b += 8;
c = doz(c, 8);
} while (c != 0);
}
}
i0 = (const uint16_t*) ((uintptr_t) i${ROW_TILE - ROW_SUBTILE} + input_increment);
$for M in range(1, ROW_SUBTILE):
i${M} = (const uint16_t*) ((uintptr_t) i${M + ROW_TILE - ROW_SUBTILE} + input_increment);
$if M % 2 == 1:
if XNN_UNPREDICTABLE(rows < ${M+1}) {
i${M} = (const uint16_t*) zero;
}
$else:
if XNN_UNPREDICTABLE(rows <= ${M}) {
i${M} = (const uint16_t*) zero;
}
uint16_t* o = (uint16_t*) output;
const __m256 vscale = _mm256_load_ps(params->avx.scale);
const __m256 vmin = _mm256_load_ps(params->avx.min);
const __m256 vmax = _mm256_load_ps(params->avx.max);
for (; channels >= ${CHANNEL_TILE}; channels -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
__m128i vacc${ABC[C:C+8]} = _mm_loadu_si128((const __m128i*) buffer); buffer = (uint16_t*) buffer + 8;
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vi0x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8;
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vi${M}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_mul_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vscale), _MM_FROUND_TO_NEAREST_INT);
$for C in range(0, CHANNEL_TILE, 8):
__m256 vout${ABC[C:C+8]} = _mm256_max_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vmin);
$for C in range(0, CHANNEL_TILE, 8):
vout${ABC[C:C+8]} = _mm256_min_ps(vout${ABC[C:C+8]}, vmax);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT));
$for C in range(8, CHANNEL_TILE, 8):
_mm_storeu_si128((__m128i*) ((uint16_t*) o + ${C}), _mm256_cvtps_ph(vout${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT));
o += ${CHANNEL_TILE};
}
if XNN_UNLIKELY(channels != 0) {
${"do " if CHANNEL_TILE > 8 else ""}{
__m128i vacc${ABC[0:8]} = _mm_loadu_si128((const __m128i*) buffer); buffer = (uint16_t*) buffer + 8;
const __m256 vi0x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8;
$for M in range(ROW_TILE):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vi${M}x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT);
vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_mul_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vscale), _MM_FROUND_TO_NEAREST_INT);
__m256 vout${ABC[0:8]} = _mm256_max_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vmin);
vout${ABC[0:8]} = _mm256_min_ps(vout${ABC[0:8]}, vmax);
$if CHANNEL_TILE > 8:
if XNN_LIKELY(channels >= 8) {
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT));
o += 8;
channels -= 8;
} else {
__m128i vh${ABC[0:8]} = _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT);
if (channels & 4) {
_mm_storel_epi64((__m128i*) o, vh${ABC[0:8]});
o += 4;
vh${ABC[0:8]} = _mm_unpackhi_epi64(vh${ABC[0:8]}, vh${ABC[0:8]});
}
if (channels & 2) {
_mm_storeu_si32(o, vh${ABC[0:8]});
o += 2;
vh${ABC[0:8]} = _mm_srli_epi64(vh${ABC[0:8]}, 32);
}
if (channels & 1) {
*o = (uint16_t) _mm_extract_epi16(vh${ABC[0:8]}, 0);
}
channels = 0;
}
$else:
__m128i vh${ABC[0:8]} = _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT);
if (channels & 4) {
_mm_storel_epi64((__m128i*) o, vh${ABC[0:8]});
o += 4;
vh${ABC[0:8]} = _mm_unpackhi_epi64(vh${ABC[0:8]}, vh${ABC[0:8]});
}
if (channels & 2) {
_mm_storeu_si32(o, vh${ABC[0:8]});
o += 2;
vh${ABC[0:8]} = _mm_srli_epi64(vh${ABC[0:8]}, 32);
}
if (channels & 1) {
*o = (uint16_t) _mm_extract_epi16(vh${ABC[0:8]}, 0);
}
}${" while (channels != 0);" if CHANNEL_TILE > 8 else ""}
}
}
|