File size: 7,415 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <limits>
#include <random>
#include <vector>

#include <benchmark/benchmark.h>
#include "bench/dconv.h"
#include "bench/utils.h"

#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/conv.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/pack.h>


static void f32_conv_hwc(benchmark::State& state,
  xnn_f32_conv_hwc_ukernel_fn conv,
  xnn_init_f32_minmax_params_fn init_params,
  uint32_t output_channels_tile,
  benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
  if (isa_check && !isa_check(state)) {
    return;
  }

  const size_t input_height = state.range(0);
  const size_t input_width = state.range(1);
  const size_t output_channels = state.range(2);

  std::random_device random_device;
  auto rng = std::mt19937(random_device());
  auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));

  const size_t input_channels = 3;
  const size_t kernel_size = 3;
  const size_t padding = 1;
  const size_t subsampling = 2;

  const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1;
  const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1;

  std::vector<float> input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(float));
  std::generate(input.begin(), input.end(), std::ref(f32rng));
  std::vector<float> kernel(output_channels * kernel_size * kernel_size * input_channels);
  std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
  std::vector<float> bias(output_channels);
  std::generate(bias.begin(), bias.end(), std::ref(f32rng));

  std::vector<float, AlignedAllocator<float, 64>> zero(input_channels * input_width + XNN_EXTRA_BYTES / sizeof(float));

  const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) *
    benchmark::utils::RoundUp<size_t>(output_channels, output_channels_tile);
  const size_t output_elements = output_height * output_width * output_channels;
  const size_t num_buffers = 1 +
    benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
      sizeof(float) * (weights_elements + output_elements));

  std::vector<float, AlignedAllocator<float, 64>> packed_weights(weights_elements * num_buffers);
  std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
  xnn_pack_f32_dconv_oki_w(
    output_channels, input_channels, output_channels_tile,
    kernel_size /* kernel height */, kernel_size /* kernel width */,
    kernel.data(), bias.data(), packed_weights.data(), nullptr);
  for (size_t n = 1; n < num_buffers; n++) {
    std::copy(packed_weights.cbegin(),
      packed_weights.cbegin() + weights_elements,
      packed_weights.begin() + n * weights_elements);
  }

  std::vector<float> output(output_elements * num_buffers);
  std::fill(output.begin(), output.end(), std::nanf(""));

  xnn_f32_minmax_params params;
  init_params(&params,
    -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());

  size_t buffer_index = 0;
  for (auto _ : state) {
    state.PauseTiming();
    benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float));
    buffer_index = (buffer_index + 1) % num_buffers;
    state.ResumeTiming();

    conv(
      input_height, input_width,
      0 /* output_y_start */, output_height /* output_y_end */,
      input.data(), zero.data(),
      packed_weights.data() + buffer_index * weights_elements,
      output.data() + buffer_index * output_elements,
      padding, output_channels,
      output_channels * output_width * sizeof(float),
      output_channels * sizeof(float),
      &params);
  }

  const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
  if (cpu_frequency != 0) {
    state.counters["cpufreq"] = cpu_frequency;
  }

  state.counters["FLOPS"] = benchmark::Counter(
    uint64_t(state.iterations()) * 2 *
      output_height * output_width *
      input_channels * output_channels *
      kernel_size * kernel_size,
    benchmark::Counter::kIsRate);
}


#if XNN_ARCH_ARM64
  static void f32_conv_hwc_3x3s2p1c3x8__aarch64_neonfma_2x1(benchmark::State& state, const char* net) {
    f32_conv_hwc(state,
      xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__aarch64_neonfma_2x1,
      xnn_init_f32_minmax_scalar_params,
      8 /* output channel tile */,
      benchmark::utils::CheckNEONFMA);
  }
  static void f32_conv_hwc_3x3s2p1c3x4__aarch64_neonfma_2x1(benchmark::State& state, const char* net) {
    f32_conv_hwc(state,
      xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__aarch64_neonfma_2x1,
      xnn_init_f32_minmax_scalar_params,
      4 /* output channel tile */,
      benchmark::utils::CheckNEONFMA);
  }
  static void f32_conv_hwc_3x3s2p1c3x8__aarch64_neonfma_2x2(benchmark::State& state, const char* net) {
    f32_conv_hwc(state,
      xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__aarch64_neonfma_2x2,
      xnn_init_f32_minmax_scalar_params,
      8 /* output channel tile */,
      benchmark::utils::CheckNEONFMA);
  }
  static void f32_conv_hwc_3x3s2p1c3x4__aarch64_neonfma_2x2(benchmark::State& state, const char* net) {
    f32_conv_hwc(state,
      xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__aarch64_neonfma_2x2,
      xnn_init_f32_minmax_scalar_params,
      4 /* output channel tile */,
      benchmark::utils::CheckNEONFMA);
  }

  BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__aarch64_neonfma_2x1);
  BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__aarch64_neonfma_2x1);
  BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__aarch64_neonfma_2x2);
  BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__aarch64_neonfma_2x2);
#endif  // XNN_ARCH_ARM64


#if XNN_ARCH_ARM || XNN_ARCH_ARM64
  static void f32_conv_hwc_3x3s2p1c3x8__neon_2x1(benchmark::State& state, const char* net) {
    f32_conv_hwc(state,
      xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x1,
      xnn_init_f32_minmax_scalar_params,
      8 /* output channel tile */,
      benchmark::utils::CheckNEON);
  }
  static void f32_conv_hwc_3x3s2p1c3x4__neon_2x1(benchmark::State& state, const char* net) {
    f32_conv_hwc(state,
      xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x1,
      xnn_init_f32_minmax_scalar_params,
      4 /* output channel tile */,
      benchmark::utils::CheckNEON);
  }
  static void f32_conv_hwc_3x3s2p1c3x8__neon_2x2(benchmark::State& state, const char* net) {
    f32_conv_hwc(state,
      xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x2,
      xnn_init_f32_minmax_scalar_params,
      8 /* output channel tile */,
      benchmark::utils::CheckNEON);
  }
  static void f32_conv_hwc_3x3s2p1c3x4__neon_2x2(benchmark::State& state, const char* net) {
    f32_conv_hwc(state,
      xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x2,
      xnn_init_f32_minmax_scalar_params,
      4 /* output channel tile */,
      benchmark::utils::CheckNEON);
  }

  BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x1);
  BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x1);
  BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x2);
  BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x2);
#endif  // XNN_ARCH_ARM || XNN_ARCH_ARM64


#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif