File size: 7,415 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <benchmark/benchmark.h>
#include "bench/dconv.h"
#include "bench/utils.h"
#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/conv.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/pack.h>
static void f32_conv_hwc(benchmark::State& state,
xnn_f32_conv_hwc_ukernel_fn conv,
xnn_init_f32_minmax_params_fn init_params,
uint32_t output_channels_tile,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check && !isa_check(state)) {
return;
}
const size_t input_height = state.range(0);
const size_t input_width = state.range(1);
const size_t output_channels = state.range(2);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
const size_t input_channels = 3;
const size_t kernel_size = 3;
const size_t padding = 1;
const size_t subsampling = 2;
const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1;
const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1;
std::vector<float> input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(float));
std::generate(input.begin(), input.end(), std::ref(f32rng));
std::vector<float> kernel(output_channels * kernel_size * kernel_size * input_channels);
std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
std::vector<float> bias(output_channels);
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::vector<float, AlignedAllocator<float, 64>> zero(input_channels * input_width + XNN_EXTRA_BYTES / sizeof(float));
const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) *
benchmark::utils::RoundUp<size_t>(output_channels, output_channels_tile);
const size_t output_elements = output_height * output_width * output_channels;
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (weights_elements + output_elements));
std::vector<float, AlignedAllocator<float, 64>> packed_weights(weights_elements * num_buffers);
std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
xnn_pack_f32_dconv_oki_w(
output_channels, input_channels, output_channels_tile,
kernel_size /* kernel height */, kernel_size /* kernel width */,
kernel.data(), bias.data(), packed_weights.data(), nullptr);
for (size_t n = 1; n < num_buffers; n++) {
std::copy(packed_weights.cbegin(),
packed_weights.cbegin() + weights_elements,
packed_weights.begin() + n * weights_elements);
}
std::vector<float> output(output_elements * num_buffers);
std::fill(output.begin(), output.end(), std::nanf(""));
xnn_f32_minmax_params params;
init_params(¶ms,
-std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
size_t buffer_index = 0;
for (auto _ : state) {
state.PauseTiming();
benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
conv(
input_height, input_width,
0 /* output_y_start */, output_height /* output_y_end */,
input.data(), zero.data(),
packed_weights.data() + buffer_index * weights_elements,
output.data() + buffer_index * output_elements,
padding, output_channels,
output_channels * output_width * sizeof(float),
output_channels * sizeof(float),
¶ms);
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["FLOPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 *
output_height * output_width *
input_channels * output_channels *
kernel_size * kernel_size,
benchmark::Counter::kIsRate);
}
#if XNN_ARCH_ARM64
static void f32_conv_hwc_3x3s2p1c3x8__aarch64_neonfma_2x1(benchmark::State& state, const char* net) {
f32_conv_hwc(state,
xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__aarch64_neonfma_2x1,
xnn_init_f32_minmax_scalar_params,
8 /* output channel tile */,
benchmark::utils::CheckNEONFMA);
}
static void f32_conv_hwc_3x3s2p1c3x4__aarch64_neonfma_2x1(benchmark::State& state, const char* net) {
f32_conv_hwc(state,
xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__aarch64_neonfma_2x1,
xnn_init_f32_minmax_scalar_params,
4 /* output channel tile */,
benchmark::utils::CheckNEONFMA);
}
static void f32_conv_hwc_3x3s2p1c3x8__aarch64_neonfma_2x2(benchmark::State& state, const char* net) {
f32_conv_hwc(state,
xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__aarch64_neonfma_2x2,
xnn_init_f32_minmax_scalar_params,
8 /* output channel tile */,
benchmark::utils::CheckNEONFMA);
}
static void f32_conv_hwc_3x3s2p1c3x4__aarch64_neonfma_2x2(benchmark::State& state, const char* net) {
f32_conv_hwc(state,
xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__aarch64_neonfma_2x2,
xnn_init_f32_minmax_scalar_params,
4 /* output channel tile */,
benchmark::utils::CheckNEONFMA);
}
BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__aarch64_neonfma_2x1);
BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__aarch64_neonfma_2x1);
BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__aarch64_neonfma_2x2);
BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__aarch64_neonfma_2x2);
#endif // XNN_ARCH_ARM64
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
static void f32_conv_hwc_3x3s2p1c3x8__neon_2x1(benchmark::State& state, const char* net) {
f32_conv_hwc(state,
xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x1,
xnn_init_f32_minmax_scalar_params,
8 /* output channel tile */,
benchmark::utils::CheckNEON);
}
static void f32_conv_hwc_3x3s2p1c3x4__neon_2x1(benchmark::State& state, const char* net) {
f32_conv_hwc(state,
xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x1,
xnn_init_f32_minmax_scalar_params,
4 /* output channel tile */,
benchmark::utils::CheckNEON);
}
static void f32_conv_hwc_3x3s2p1c3x8__neon_2x2(benchmark::State& state, const char* net) {
f32_conv_hwc(state,
xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x2,
xnn_init_f32_minmax_scalar_params,
8 /* output channel tile */,
benchmark::utils::CheckNEON);
}
static void f32_conv_hwc_3x3s2p1c3x4__neon_2x2(benchmark::State& state, const char* net) {
f32_conv_hwc(state,
xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x2,
xnn_init_f32_minmax_scalar_params,
4 /* output channel tile */,
benchmark::utils::CheckNEON);
}
BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x1);
BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x1);
BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x2);
BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x2);
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif
|