File size: 5,002 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <random>
#include <vector>

#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/dconv.h"
#include "bench/utils.h"

#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/conv.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/microparams-init.h>
#include <xnnpack/pack.h>


static void f16_conv_hwc2chw(benchmark::State& state,
  xnn_f16_conv_hwc2chw_ukernel_fn conv,
  uint32_t output_channels_tile,
  xnn_init_f16_minmax_params_fn init_params,
  benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
  if ((isa_check != nullptr) && !isa_check(state)) {
    return;
  }
  const size_t input_height = state.range(0);
  const size_t input_width = state.range(1);
  const size_t output_channels = state.range(2);

  std::random_device random_device;
  auto rng = std::mt19937(random_device());
  auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
  auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);

  const size_t input_channels = 3;
  const size_t kernel_size = 3;
  const size_t padding = 1;
  const size_t subsampling = 2;

  const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1;
  const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1;

  std::vector<uint16_t> input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(uint16_t));
  std::generate(input.begin(), input.end(), std::ref(f16rng));
  std::vector<uint16_t> kernel(output_channels * kernel_size * kernel_size * input_channels);
  std::generate(kernel.begin(), kernel.end(), std::ref(f16rng));
  std::vector<uint16_t> bias(output_channels);
  std::generate(bias.begin(), bias.end(), std::ref(f16rng));

  std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> zero(input_channels * input_width + XNN_EXTRA_BYTES / sizeof(uint16_t));

  const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) *
    benchmark::utils::RoundUp<size_t>(output_channels, output_channels_tile);
  const size_t output_elements = output_height * output_width * output_channels;
  const size_t num_buffers = 1 +
    benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
      sizeof(uint16_t) * (weights_elements + output_elements));

  std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_weights(weights_elements * num_buffers);
  std::fill(packed_weights.begin(), packed_weights.end(), UINT16_C(0));
  xnn_pack_f16_dconv_oki_w(
    output_channels, input_channels, output_channels_tile,
    kernel_size /* kernel height */, kernel_size /* kernel width */,
    kernel.data(), bias.data(), packed_weights.data(), nullptr);
  for (size_t n = 1; n < num_buffers; n++) {
    std::copy(packed_weights.cbegin(),
      packed_weights.cbegin() + weights_elements,
      packed_weights.begin() + n * weights_elements);
  }

  std::vector<uint16_t> output(output_elements * num_buffers);
  std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);

  xnn_f16_minmax_params params;
  init_params(&params, 0x7C00 /* inf */, 0xFC00 /* -inf */);

  size_t buffer_index = 0;
  for (auto _ : state) {
    state.PauseTiming();
    benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(uint16_t));
    buffer_index = (buffer_index + 1) % num_buffers;
    state.ResumeTiming();

    conv(
      input_height, input_width,
      0 /* output_y_start */, output_height /* output_y_end */,
      input.data(), zero.data(),
      packed_weights.data() + buffer_index * weights_elements,
      output.data() + buffer_index * output_elements,
      padding, output_channels,
      output_channels * output_width * sizeof(uint16_t),
      output_channels * sizeof(uint16_t),
      &params);
  }

  const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
  if (cpu_frequency != 0) {
    state.counters["cpufreq"] = cpu_frequency;
  }

  state.counters["FLOPS"] = benchmark::Counter(
    uint64_t(state.iterations()) * 2 *
      output_height * output_width *
      input_channels * output_channels *
      kernel_size * kernel_size,
    benchmark::Counter::kIsRate);
}

#if XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
  static void f16_conv_hwc2chw_3x3s2p1c3x4__neonfp16arith_2x2(benchmark::State& state, const char* net) {
    f16_conv_hwc2chw(state, xnn_f16_conv_hwc2chw_ukernel_3x3s2p1c3x4__neonfp16arith_2x2, 4,
      xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH);
  }

  BENCHMARK_DCONV(f16_conv_hwc2chw_3x3s2p1c3x4__neonfp16arith_2x2);
#endif  // XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)

#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif