File size: 13,439 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#!/usr/bin/env python
# Copyright 2020 Google LLC
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import codecs
import os
import re
import sys
import yaml

sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from primes import next_prime
import xngen
import xnncommon


parser = argparse.ArgumentParser(
  description='Test generator for DWCONV2D CHW micro-kernels')
parser.add_argument("-s", "--spec", metavar="FILE", required=True,
                    help="Spec (YAML) file")
parser.add_argument("-o", "--output", metavar="FILE", required=True,
                    help='Output (C++ source) file')
parser.set_defaults(defines=list())


TEST_TEMPLATE = """\
$if SUBSAMPLING == 1:
  TEST(${TEST_NAME}, output_width_eq_${WIDTH_TILE}) {
    $if ISA_CHECK:
      ${ISA_CHECK};
    DWConv2DMicrokernelTester()
      .input_width(${(WIDTH_TILE - 1) * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING})
      .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1})
      .kernel_height(${KERNEL_HEIGHT})
      .kernel_width(${KERNEL_WIDTH})
      .subsampling(${SUBSAMPLING})
      .padding_left(${PADDING})
      .padding_right(${PADDING})
      .padding_top(${PADDING})
      .padding_bottom(${PADDING})
      .Test(${", ".join(TEST_ARGS)});
  }
$else:
  TEST(${TEST_NAME}, output_width_eq_${WIDTH_TILE}) {
    $if ISA_CHECK:
      ${ISA_CHECK};
    for (size_t input_width = ${(WIDTH_TILE - 1) * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width < ${WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width++) {
      DWConv2DMicrokernelTester()
        .input_width(input_width)
        .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1})
        .kernel_height(${KERNEL_HEIGHT})
        .kernel_width(${KERNEL_WIDTH})
        .subsampling(${SUBSAMPLING})
        .padding_left(${PADDING})
        .padding_right(${PADDING})
        .padding_top(${PADDING})
        .padding_bottom(${PADDING})
        .Test(${", ".join(TEST_ARGS)});
    }
  }

$if WIDTH_TILE > 1:
  TEST(${TEST_NAME}, output_width_div_${WIDTH_TILE}) {
    $if ISA_CHECK:
      ${ISA_CHECK};
    for (size_t input_width = ${2 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING - 1}; input_width < ${8 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING - 1}; input_width += ${WIDTH_TILE * SUBSAMPLING}) {
      DWConv2DMicrokernelTester()
        .input_width(input_width)
        .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1})
        .kernel_height(${KERNEL_HEIGHT})
        .kernel_width(${KERNEL_WIDTH})
        .subsampling(${SUBSAMPLING})
        .padding_left(${PADDING})
        .padding_right(${PADDING})
        .padding_top(${PADDING})
        .padding_bottom(${PADDING})
        .Test(${", ".join(TEST_ARGS)});
    }
  }

  TEST(${TEST_NAME}, output_width_lt_${WIDTH_TILE}) {
    $if ISA_CHECK:
      ${ISA_CHECK};
    for (size_t input_width = ${max(1, KERNEL_WIDTH - 2 * PADDING)}; input_width < ${(WIDTH_TILE - 1) * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width++) {
      DWConv2DMicrokernelTester()
        .input_width(${WIDTH_TILE * SUBSAMPLING})
        .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1})
        .kernel_height(${KERNEL_HEIGHT})
        .kernel_width(${KERNEL_WIDTH})
        .subsampling(${SUBSAMPLING})
        .padding_left(${PADDING})
        .padding_right(${PADDING})
        .padding_top(${PADDING})
        .padding_bottom(${PADDING})
        .Test(${", ".join(TEST_ARGS)});
    }
  }

TEST(${TEST_NAME}, output_width_gt_${WIDTH_TILE}) {
  $if ISA_CHECK:
    ${ISA_CHECK};
  for (size_t input_width = ${WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width < ${(5 if WIDTH_TILE == 1 else 2) * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width++) {
    DWConv2DMicrokernelTester()
      .input_width(input_width)
      .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1})
      .kernel_height(${KERNEL_HEIGHT})
      .kernel_width(${KERNEL_WIDTH})
      .subsampling(${SUBSAMPLING})
      .padding_left(${PADDING})
      .padding_right(${PADDING})
      .padding_top(${PADDING})
      .padding_bottom(${PADDING})
      .Test(${", ".join(TEST_ARGS)});
  }
}

$if SUBSAMPLING > 1:
  TEST(${TEST_NAME}, output_height_eq_${HEIGHT_TILE}) {
    $if ISA_CHECK:
      ${ISA_CHECK};
    for (size_t input_height = ${(HEIGHT_TILE - 1) * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height < ${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height++) {
      for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) {
        DWConv2DMicrokernelTester()
          .input_width(input_width)
          .input_height(input_height)
          .kernel_height(${KERNEL_HEIGHT})
          .kernel_width(${KERNEL_WIDTH})
          .subsampling(${SUBSAMPLING})
          .padding_left(${PADDING})
          .padding_right(${PADDING})
          .padding_top(${PADDING})
          .padding_bottom(${PADDING})
          .Test(${", ".join(TEST_ARGS)});
      }
    }
  }

$if HEIGHT_TILE > 1:
  TEST(${TEST_NAME}, output_height_div_${HEIGHT_TILE}) {
    $if ISA_CHECK:
      ${ISA_CHECK};
    for (size_t input_height = ${2 * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}; input_height < ${8 * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}; input_height += ${HEIGHT_TILE * SUBSAMPLING}) {
      for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) {
        DWConv2DMicrokernelTester()
          .input_width(input_width)
          .input_height(input_height)
          .kernel_height(${KERNEL_HEIGHT})
          .kernel_width(${KERNEL_WIDTH})
          .subsampling(${SUBSAMPLING})
          .padding_left(${PADDING})
          .padding_right(${PADDING})
          .padding_top(${PADDING})
          .padding_bottom(${PADDING})
          .Test(${", ".join(TEST_ARGS)});
      }
    }
  }

  TEST(${TEST_NAME}, output_height_lt_${HEIGHT_TILE}) {
    $if ISA_CHECK:
      ${ISA_CHECK};
    for (size_t input_height = ${max(1, KERNEL_HEIGHT - 2 * PADDING)}; input_height < ${(HEIGHT_TILE - 1) * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height++) {
      for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) {
        DWConv2DMicrokernelTester()
          .input_width(input_width)
          .input_height(input_height)
          .kernel_height(${KERNEL_HEIGHT})
          .kernel_width(${KERNEL_WIDTH})
          .subsampling(${SUBSAMPLING})
          .padding_left(${PADDING})
          .padding_right(${PADDING})
          .padding_top(${PADDING})
          .padding_bottom(${PADDING})
          .Test(${", ".join(TEST_ARGS)});
      }
    }
  }

TEST(${TEST_NAME}, output_height_gt_${HEIGHT_TILE}) {
  $if ISA_CHECK:
    ${ISA_CHECK};
  for (size_t input_height = ${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height < ${(5 if WIDTH_TILE == 1 else 2) * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height++) {
    for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) {
      DWConv2DMicrokernelTester()
        .input_width(input_width)
        .input_height(input_height)
        .kernel_height(${KERNEL_HEIGHT})
        .kernel_width(${KERNEL_WIDTH})
        .subsampling(${SUBSAMPLING})
        .padding_left(${PADDING})
        .padding_right(${PADDING})
        .padding_top(${PADDING})
        .padding_bottom(${PADDING})
        .Test(${", ".join(TEST_ARGS)});
    }
  }
}

$if SUBSAMPLING > 1:
  TEST(${TEST_NAME}, padding_top_eq_${SUBSAMPLING - 1}) {
    $if ISA_CHECK:
      ${ISA_CHECK};
    for (size_t input_height = ${max(1, KERNEL_HEIGHT - 2 * PADDING + 1)}; input_height < ${3 * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING + 1}; input_height++) {
      for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) {
        DWConv2DMicrokernelTester()
          .input_width(input_width)
          .input_height(input_height)
          .kernel_height(${KERNEL_HEIGHT})
          .kernel_width(${KERNEL_WIDTH})
          .subsampling(${SUBSAMPLING})
          .padding_left(${PADDING})
          .padding_right(${PADDING})
          .padding_top(${PADDING - 1})
          .padding_bottom(${PADDING})
          .Test(${", ".join(TEST_ARGS)});
      }
    }
  }
"""

def split_ukernel_name(name):
  match = re.fullmatch(r"xnn_(f16|f32)_dwconv2d_chw_ukernel_(\d+)x(\d+)(s2)?p(\d+)__(.+)_(\d+)x(\d+)(_acc\d+)?", name)
  assert match is not None
  kernel_height, kernel_width = int(match.group(2)), int(match.group(3))
  if match.group(4):
    assert match.group(4).startswith("s")
    stride = int(match.group(4)[1:])
  else:
    stride = 1
  padding = int(match.group(5))

  height_tile = int(match.group(7))
  width_tile = int(match.group(8))

  arch, isa, assembly = xnncommon.parse_target_name(target_name=match.group(6))
  return kernel_height, kernel_width, stride, padding, arch, isa, \
         height_tile, width_tile


def generate_test_cases(ukernel, kernel_height, kernel_width, subsampling, \
  init_fn, padding, isa, height_tile, width_tile):
  """Generates all tests cases for a DWCONV2D CHW micro-kernel.

  Args:
    ukernel: C name of the micro-kernel function.
    kernel_height: convolution kernel height assumed by the micro-kernel.
    kernel_width: convolution kernel width assumed by the micro-kernel.
    subsampling: convolution subsampling (stride) assumed by the micro-kernel.
                 The same subsampling factor is assumed for both horizontal and
                 vertical directions.
    init_fn: C name of the function to initialize microkernel parameters.
    padding: convolution padding value assumed by the micro-kernel for right,
             bottom, and left padding. If convolution stride is 1, the same
             padding value is assumed for the top padding. If convolution stride
             is different than 1, top padding is specified via micro-kernel
             parameter, and can be either padding or (padding - 1).
    isa: instruction set required to run the micro-kernel. Generated unit test
         will skip execution if the host processor doesn't support this ISA.
    height_tile: number of output rows processed in one iteration of the main
                 loop of the micro-kernel.
    width_tile: number of output columns processed in one iteration of the main
                loop of the micro-kernel.

  Returns:
    Code for the test case.
  """
  _, test_name = ukernel.split("_", 1)
  _, datatype, ukernel_type, _ = ukernel.split("_", 3)
  test_args = [ukernel, init_fn]
  return xngen.preprocess(TEST_TEMPLATE, {
      "TEST_NAME": test_name.upper().replace("UKERNEL_", ""),
      "TEST_ARGS": test_args,
      "UKERNEL_TYPE": ukernel_type.upper(),
      "DATATYPE": datatype,
      "KERNEL_HEIGHT": kernel_height,
      "KERNEL_WIDTH": kernel_width,
      "SUBSAMPLING": subsampling,
      "PADDING": padding,
      "HEIGHT_TILE": height_tile,
      "WIDTH_TILE": width_tile,
      "ISA_CHECK": xnncommon.generate_isa_check_macro(isa),
      "next_prime": next_prime,
    })


def main(args):
  options = parser.parse_args(args)

  with codecs.open(options.spec, "r", encoding="utf-8") as spec_file:
    spec_yaml = yaml.safe_load(spec_file)
    if not isinstance(spec_yaml, list):
      raise ValueError("expected a list of micro-kernels in the spec")

    tests = """\
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
//
// Auto-generated file. Do not edit!
//   Specification: {specification}
//   Generator: {generator}


#include <gtest/gtest.h>

#include <xnnpack/common.h>
#include <xnnpack/isa-checks.h>

#include <xnnpack/dwconv.h>
#include "dwconv2d-microkernel-tester.h"
""".format(specification=options.spec, generator=sys.argv[0])

    for ukernel_spec in spec_yaml:
      name = ukernel_spec["name"]
      init_fn = ukernel_spec["init"]
      pipelined = bool(ukernel_spec.get("pipelined", False))
      kernel_height, kernel_width, subsampling, padding, arch, isa, \
        height_tile, width_tile = split_ukernel_name(name)

      test_case = generate_test_cases(name, kernel_height, kernel_width, \
                                      subsampling, init_fn, padding, isa, \
                                      height_tile, width_tile)
      tests += "\n\n" + xnncommon.postprocess_test_case(test_case, arch, isa)

    txt_changed = True
    if os.path.exists(options.output):
      with codecs.open(options.output, "r", encoding="utf-8") as output_file:
        txt_changed = output_file.read() != tests

    if txt_changed:
      with codecs.open(options.output, "w", encoding="utf-8") as output_file:
        output_file.write(tests)


if __name__ == "__main__":
  main(sys.argv[1:])