File size: 2,984 Bytes
e7af1f8 28357e7 e7af1f8 28357e7 e7af1f8 b4be586 e7af1f8 b4be586 e7af1f8 28357e7 e7af1f8 28357e7 e7af1f8 b4be586 e7af1f8 8de96ae e7af1f8 8de96ae e7af1f8 b4be586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
language:
- ja
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- ja
datasets:
- common_voice
model-index:
- name: 'XLS-R-300-m'
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: ja
metrics:
- name: Test WER
type: wer
value: 94.91
- name: Test CER
type: cer
value: 23.32
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5351
- Wer: 2.6188
Kanji are converted into Hiragana using the [pykakasi](https://pykakasi.readthedocs.io/en/latest/index.html) library during training and evaluation. The model can output both Hiragana and Katakana characters.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 48
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 4.221 | 4.5 | 1000 | 4.1195 | 2.4024 |
| 2.3597 | 9.01 | 2000 | 1.1024 | 2.7618 |
| 1.8795 | 13.51 | 3000 | 0.7498 | 2.5885 |
| 1.7143 | 18.02 | 4000 | 0.6539 | 2.5976 |
| 1.6025 | 22.52 | 5000 | 0.5989 | 2.6034 |
| 1.5403 | 27.03 | 6000 | 0.6035 | 2.6946 |
| 1.4773 | 31.53 | 7000 | 0.5647 | 2.5558 |
| 1.4228 | 36.04 | 8000 | 0.5477 | 2.5676 |
| 1.3801 | 40.54 | 9000 | 0.5413 | 2.6192 |
| 1.3558 | 45.05 | 10000 | 0.5343 | 2.6575 |
| 1.3298 | 49.55 | 11000 | 0.5349 | 2.6274 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs
``` |