File size: 8,010 Bytes
259dd54
 
 
 
 
 
e6e17dd
259dd54
e6e17dd
 
bda833f
259dd54
ddf4608
259dd54
5ef51e3
ddf4608
 
5ef51e3
ddf4608
 
 
 
 
 
5ef51e3
 
 
 
 
 
29a3f09
5ef51e3
29a3f09
 
 
 
 
 
5ef51e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259dd54
 
 
ddf4608
 
 
 
 
259dd54
 
 
 
31af956
 
 
259dd54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24df733
259dd54
 
31af956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259dd54
 
 
 
 
 
ddf4608
 
 
 
 
 
 
29a3f09
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - German
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: de
    metrics:
    - name: Test WER
      type: wer
      value: 20.16
    - name: Test CER
      type: cer
      value: 5.06
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: de
    metrics:
    - name: Test WER
      type: wer
      value: 39.79
    - name: Test CER
      type: cer
      value: 15.02
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: de
    metrics:
    - name: Test WER
      type: wer
      value: 47.95
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. 
eval results:
WER: 0.20161578657865786
CER: 0.05062357805269733
-->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1768
- Wer: 0.2016

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 3.4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 5.7531        | 0.04  | 500   | 5.4564          | 1.0    |
| 2.9882        | 0.08  | 1000  | 3.0041          | 1.0    |
| 2.1953        | 0.13  | 1500  | 1.1723          | 0.7121 |
| 1.2406        | 0.17  | 2000  | 0.3656          | 0.3623 |
| 1.1294        | 0.21  | 2500  | 0.2843          | 0.2926 |
| 1.0731        | 0.25  | 3000  | 0.2554          | 0.2664 |
| 1.051         | 0.3   | 3500  | 0.2387          | 0.2535 |
| 1.0479        | 0.34  | 4000  | 0.2345          | 0.2512 |
| 1.0026        | 0.38  | 4500  | 0.2270          | 0.2452 |
| 0.9921        | 0.42  | 5000  | 0.2212          | 0.2353 |
| 0.9839        | 0.47  | 5500  | 0.2141          | 0.2330 |
| 0.9907        | 0.51  | 6000  | 0.2122          | 0.2334 |
| 0.9788        | 0.55  | 6500  | 0.2114          | 0.2270 |
| 0.9687        | 0.59  | 7000  | 0.2066          | 0.2323 |
| 0.9777        | 0.64  | 7500  | 0.2033          | 0.2237 |
| 0.9476        | 0.68  | 8000  | 0.2020          | 0.2194 |
| 0.9625        | 0.72  | 8500  | 0.1977          | 0.2191 |
| 0.9497        | 0.76  | 9000  | 0.1976          | 0.2175 |
| 0.9781        | 0.81  | 9500  | 0.1956          | 0.2159 |
| 0.9552        | 0.85  | 10000 | 0.1958          | 0.2191 |
| 0.9345        | 0.89  | 10500 | 0.1964          | 0.2158 |
| 0.9528        | 0.93  | 11000 | 0.1926          | 0.2154 |
| 0.9502        | 0.98  | 11500 | 0.1953          | 0.2149 |
| 0.9358        | 1.02  | 12000 | 0.1927          | 0.2167 |
| 0.941         | 1.06  | 12500 | 0.1901          | 0.2115 |
| 0.9287        | 1.1   | 13000 | 0.1936          | 0.2090 |
| 0.9491        | 1.15  | 13500 | 0.1900          | 0.2104 |
| 0.9478        | 1.19  | 14000 | 0.1931          | 0.2120 |
| 0.946         | 1.23  | 14500 | 0.1914          | 0.2134 |
| 0.9499        | 1.27  | 15000 | 0.1931          | 0.2173 |
| 0.9346        | 1.32  | 15500 | 0.1913          | 0.2105 |
| 0.9509        | 1.36  | 16000 | 0.1902          | 0.2137 |
| 0.9294        | 1.4   | 16500 | 0.1895          | 0.2086 |
| 0.9418        | 1.44  | 17000 | 0.1913          | 0.2183 |
| 0.9302        | 1.49  | 17500 | 0.1884          | 0.2114 |
| 0.9418        | 1.53  | 18000 | 0.1894          | 0.2108 |
| 0.9363        | 1.57  | 18500 | 0.1886          | 0.2132 |
| 0.9338        | 1.61  | 19000 | 0.1856          | 0.2078 |
| 0.9185        | 1.66  | 19500 | 0.1852          | 0.2056 |
| 0.9216        | 1.7   | 20000 | 0.1874          | 0.2095 |
| 0.9176        | 1.74  | 20500 | 0.1873          | 0.2078 |
| 0.9288        | 1.78  | 21000 | 0.1865          | 0.2097 |
| 0.9278        | 1.83  | 21500 | 0.1869          | 0.2100 |
| 0.9295        | 1.87  | 22000 | 0.1878          | 0.2095 |
| 0.9221        | 1.91  | 22500 | 0.1852          | 0.2121 |
| 0.924         | 1.95  | 23000 | 0.1855          | 0.2042 |
| 0.9104        | 2.0   | 23500 | 0.1858          | 0.2105 |
| 0.9284        | 2.04  | 24000 | 0.1850          | 0.2080 |
| 0.9162        | 2.08  | 24500 | 0.1839          | 0.2045 |
| 0.9111        | 2.12  | 25000 | 0.1838          | 0.2080 |
| 0.91          | 2.17  | 25500 | 0.1889          | 0.2106 |
| 0.9152        | 2.21  | 26000 | 0.1856          | 0.2026 |
| 0.9209        | 2.25  | 26500 | 0.1891          | 0.2133 |
| 0.9094        | 2.29  | 27000 | 0.1857          | 0.2089 |
| 0.9065        | 2.34  | 27500 | 0.1840          | 0.2052 |
| 0.9156        | 2.38  | 28000 | 0.1833          | 0.2062 |
| 0.8986        | 2.42  | 28500 | 0.1789          | 0.2001 |
| 0.9045        | 2.46  | 29000 | 0.1769          | 0.2022 |
| 0.9039        | 2.51  | 29500 | 0.1819          | 0.2073 |
| 0.9145        | 2.55  | 30000 | 0.1828          | 0.2063 |
| 0.9081        | 2.59  | 30500 | 0.1811          | 0.2049 |
| 0.9252        | 2.63  | 31000 | 0.1833          | 0.2086 |
| 0.8957        | 2.68  | 31500 | 0.1795          | 0.2083 |
| 0.891         | 2.72  | 32000 | 0.1809          | 0.2058 |
| 0.9023        | 2.76  | 32500 | 0.1812          | 0.2061 |
| 0.8918        | 2.8   | 33000 | 0.1775          | 0.1997 |
| 0.8852        | 2.85  | 33500 | 0.1790          | 0.1997 |
| 0.8928        | 2.89  | 34000 | 0.1767          | 0.2013 |
| 0.9079        | 2.93  | 34500 | 0.1735          | 0.1986 |
| 0.9032        | 2.97  | 35000 | 0.1793          | 0.2024 |
| 0.9018        | 3.02  | 35500 | 0.1778          | 0.2027 |
| 0.8846        | 3.06  | 36000 | 0.1776          | 0.2046 |
| 0.8848        | 3.1   | 36500 | 0.1812          | 0.2064 |
| 0.9062        | 3.14  | 37000 | 0.1800          | 0.2018 |
| 0.9011        | 3.19  | 37500 | 0.1783          | 0.2049 |
| 0.8996        | 3.23  | 38000 | 0.1810          | 0.2036 |
| 0.893         | 3.27  | 38500 | 0.1805          | 0.2056 |
| 0.897         | 3.31  | 39000 | 0.1773          | 0.2035 |
| 0.8992        | 3.36  | 39500 | 0.1804          | 0.2054 |
| 0.8987        | 3.4   | 40000 | 0.1768          | 0.2016 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0

#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`

```bash
python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset mozilla-foundation/common_voice_7_0 --config de --split test --log_outputs
```

2. To evaluate on test dev data
```bash
python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```