File size: 1,698 Bytes
5a8c17f
 
a9d0d48
5a8c17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d0d48
5a8c17f
a9d0d48
 
 
 
 
5a8c17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d0d48
 
 
5a8c17f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: austin/Austin-MeDeBERTa
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: fold_0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fold_0

This model is a fine-tuned version of [austin/Austin-MeDeBERTa](https://huggingface.co/austin/Austin-MeDeBERTa) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0091
- Precision: 0.7601
- Recall: 0.7219
- F1: 0.7405
- Accuracy: 0.9976

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0461        | 1.0   | 635  | 0.0107          | 0.7529    | 0.5858 | 0.6589 | 0.9972   |
| 0.0098        | 2.0   | 1270 | 0.0087          | 0.7176    | 0.7219 | 0.7198 | 0.9974   |
| 0.0068        | 3.0   | 1905 | 0.0091          | 0.7601    | 0.7219 | 0.7405 | 0.9976   |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0