File size: 29,198 Bytes
63a538f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "91af3f42-063e-4d5c-ae16-c7c54599d582",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of entries with angle brackets: 35\n",
"Number of remaining rows: 16460737\n",
"Number of distinct protein families: 10258\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 10258/10258 [00:04<00:00, 2232.02family/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of distinct protein families in the test set: 2076\n",
"Number of distinct protein families in the train set: 8182\n",
"Percentage of families in test set: 0.20237863131214662\n"
]
},
{
"data": {
"text/plain": [
"(3307395, 13153342)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"\n",
"# Load the dataset\n",
"file_path = 'binding_sites_uniprot_16M.tsv'\n",
"data = pd.read_csv(file_path, sep='\\t')\n",
"\n",
"# Display the first few rows of the dataframe\n",
"#data.head()\n",
"\n",
"# Filter out rows with NaN values in the 'Protein families' column\n",
"data = data[pd.notna(data['Protein families'])]\n",
"\n",
"# Display the first few rows of the modified dataframe\n",
"#data.head()\n",
"\n",
"# Group the data by 'Protein families' and get the size of each group\n",
"family_sizes = data.groupby('Protein families').size()\n",
"\n",
"# Create a new column with the size of each family\n",
"data['Family size'] = data['Protein families'].map(family_sizes)\n",
"\n",
"# Sort the data by 'Family size' in descending order and then by 'Protein families'\n",
"data_sorted = data.sort_values(by=['Family size', 'Protein families'], ascending=[False, True])\n",
"\n",
"# Drop the 'Family size' column as it is no longer needed\n",
"data_sorted.drop(columns='Family size', inplace=True)\n",
"\n",
"# Define a function to extract the location from the binding and active site columns\n",
"def extract_location(site_info):\n",
" if pd.isnull(site_info):\n",
" return None\n",
" locations = []\n",
" for info in site_info.split(';'):\n",
" if 'BINDING' in info or 'ACT_SITE' in info:\n",
" locations.append(info.split()[1])\n",
" return '; '.join(locations)\n",
"\n",
"# Apply the function to the 'Binding site' and 'Active site' columns to extract the locations\n",
"data_sorted['Binding site'] = data_sorted['Binding site'].apply(extract_location)\n",
"data_sorted['Active site'] = data_sorted['Active site'].apply(extract_location)\n",
"\n",
"# Display the first few rows of the modified dataframe\n",
"#data_sorted.head()\n",
"\n",
"# Create a new column that combines the 'Binding site' and 'Active site' columns\n",
"data_sorted['Binding-Active site'] = data_sorted['Binding site'].astype(str) + '; ' + data_sorted['Active site'].astype(str)\n",
"\n",
"# Replace 'nan' values with None\n",
"data_sorted['Binding-Active site'] = data_sorted['Binding-Active site'].replace('nan; nan', None)\n",
"\n",
"# Display the first few rows of the updated dataframe\n",
"#data_sorted.head()\n",
"\n",
"# Find entries in the \"Binding-Active site\" column containing '<' or '>'\n",
"entries_with_angle_brackets = data_sorted['Binding-Active site'].str.contains('<|>', na=False)\n",
"\n",
"# Get the number of such entries\n",
"num_entries_with_angle_brackets = entries_with_angle_brackets.sum()\n",
"\n",
"# Display the number of entries containing '<' or '>'\n",
"print(f\"Number of entries with angle brackets: {num_entries_with_angle_brackets}\")\n",
"\n",
"# Remove all rows where the \"Binding-Active site\" column contains '<' or '>'\n",
"data_filtered = data_sorted[~entries_with_angle_brackets]\n",
"\n",
"# Get the number of remaining rows\n",
"num_remaining_rows = data_filtered.shape[0]\n",
"\n",
"# Display the number of remaining rows\n",
"print(f\"Number of remaining rows: {num_remaining_rows}\")\n",
"\n",
"# Get the number of distinct protein families\n",
"num_distinct_families = data_filtered['Protein families'].nunique()\n",
"\n",
"# Display the number of distinct protein families\n",
"print(f\"Number of distinct protein families: {num_distinct_families}\")\n",
"\n",
"# Define the target number of rows for the test set (approximately 20% of the data)\n",
"target_test_rows = int(0.20 * num_remaining_rows)\n",
"\n",
"# Get unique protein families\n",
"unique_families = data_filtered['Protein families'].unique()\n",
"\n",
"# Shuffle the unique families to randomize the selection\n",
"np.random.shuffle(unique_families)\n",
"\n",
"# Group the data by 'Protein families' to facilitate faster family-wise selection\n",
"grouped_data = data_filtered.groupby('Protein families')\n",
"\n",
"# Initialize variables to keep track of the selected rows for the test and train sets\n",
"test_rows = []\n",
"current_test_rows = 0\n",
"\n",
"# Initialize a flag to indicate whether the threshold has been crossed\n",
"threshold_crossed = False\n",
"\n",
"# Initialize a variable to keep track of the previous family\n",
"previous_family = None\n",
"\n",
"# Loop through the shuffled families and add rows to the test set until we reach the target number of rows\n",
"for family in tqdm(unique_families, unit=\"family\"):\n",
" family_rows = grouped_data.get_group(family).index.tolist()\n",
" # If the threshold is not yet crossed, or the family is the same as the previous family, add the family to the test set\n",
" if not threshold_crossed or (previous_family == family):\n",
" test_rows.extend(family_rows)\n",
" current_test_rows += len(family_rows)\n",
" previous_family = family # Keep track of the previous family\n",
" # Check if the threshold is crossed with the addition of the current family\n",
" if current_test_rows >= target_test_rows:\n",
" threshold_crossed = True # Set the flag to True once the threshold is crossed\n",
"\n",
"# Get the indices of the rows for the train set (all rows not in the test set) using set operations for efficiency\n",
"train_rows = set(data_filtered.index) - set(test_rows)\n",
"\n",
"# Create the test and train datasets using loc indexer with list of indices\n",
"test_df = data_filtered.loc[list(test_rows)]\n",
"train_df = data_filtered.loc[list(train_rows)]\n",
"\n",
"# Print the number of distinct protein families in the test and train sets\n",
"num_test_families = test_df['Protein families'].nunique()\n",
"num_train_families = train_df['Protein families'].nunique()\n",
"print(f\"Number of distinct protein families in the test set: {num_test_families}\")\n",
"print(f\"Number of distinct protein families in the train set: {num_train_families}\")\n",
"percentage = num_test_families/(num_test_families+num_train_families)\n",
"print(f\"Percentage of families in test set: {percentage}\")\n",
"\n",
"test_df.shape[0], train_df.shape[0]\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "772edd92-5137-486a-8a81-8ab7bf51568f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of common families: 0\n",
"No common families between test and train datasets.\n"
]
}
],
"source": [
"# Get the unique families in the test and train datasets\n",
"unique_test_families = set(test_df['Protein families'].unique())\n",
"unique_train_families = set(train_df['Protein families'].unique())\n",
"\n",
"# Find the common families between the test and train datasets\n",
"common_families = unique_test_families.intersection(unique_train_families)\n",
"\n",
"# Output the common families and their count\n",
"print(f\"Number of common families: {len(common_families)}\")\n",
"if len(common_families) > 0:\n",
" print(f\"Common families: {common_families}\")\n",
"else:\n",
" print(\"No common families between test and train datasets.\")\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "bc8825d6-60f8-4029-a4ab-a2317b170d09",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of test rows with question mark: 0\n",
"Number of train rows with question mark: 2\n",
"Number of remaining test rows: 3307395\n",
"Number of remaining train rows: 13153340\n"
]
}
],
"source": [
"import re\n",
"\n",
"# Find rows where the \"Binding-Active site\" column contains the character \"?\", treating \"?\" as a literal character\n",
"test_rows_with_question_mark = test_df[test_df['Binding-Active site'].str.contains('\\?', na=False, regex=True)]\n",
"train_rows_with_question_mark = train_df[train_df['Binding-Active site'].str.contains('\\?', na=False, regex=True)]\n",
"\n",
"# Get the number of such rows in both datasets\n",
"num_test_rows_with_question_mark = len(test_rows_with_question_mark)\n",
"num_train_rows_with_question_mark = len(train_rows_with_question_mark)\n",
"\n",
"print(f\"Number of test rows with question mark: {num_test_rows_with_question_mark}\")\n",
"print(f\"Number of train rows with question mark: {num_train_rows_with_question_mark}\")\n",
"\n",
"# Delete the rows containing '?' in the \"Binding-Active site\" column\n",
"test_df = test_df.drop(test_rows_with_question_mark.index)\n",
"train_df = train_df.drop(train_rows_with_question_mark.index)\n",
"\n",
"# Check the number of remaining rows in both datasets\n",
"remaining_test_rows = test_df.shape[0]\n",
"remaining_train_rows = train_df.shape[0]\n",
"\n",
"print(f\"Number of remaining test rows: {remaining_test_rows}\")\n",
"print(f\"Number of remaining train rows: {remaining_train_rows}\")\n",
"\n",
"def expand_ranges(s):\n",
" \"\"\"Expand ranges in a string.\"\"\"\n",
" return re.sub(r'(\\d+)\\.\\.(\\d+)', lambda m: ', '.join(map(str, range(int(m.group(1)), int(m.group(2))+1))), str(s))\n",
"\n",
"# Apply the function to expand ranges in the \"Binding-Active site\" column in both datasets\n",
"test_df['Binding-Active site'] = test_df['Binding-Active site'].apply(expand_ranges)\n",
"train_df['Binding-Active site'] = train_df['Binding-Active site'].apply(expand_ranges)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d91da865-495a-4c1d-91ed-0ebeff1ecd50",
"metadata": {},
"outputs": [],
"source": [
"def convert_to_binary_list(binding_active_str, sequence_len):\n",
" \"\"\"Convert a Binding-Active site string to a binary list based on the sequence length.\"\"\"\n",
" # Step 2: Create a list of 0s with length equal to the sequence length\n",
" binary_list = [0] * sequence_len\n",
" \n",
" # Step 3: Retrieve the indices and set the corresponding positions to 1\n",
" if pd.notna(binding_active_str):\n",
" # Get the indices from the binding-active site string\n",
" indices = [int(x) - 1 for segment in binding_active_str.split(';') for x in segment.split(',') if x.strip().isdigit()]\n",
" for idx in indices:\n",
" # Ensure the index is within the valid range\n",
" if 0 <= idx < sequence_len:\n",
" binary_list[idx] = 1\n",
" \n",
" # Step 4: Return the binary list\n",
" return binary_list\n",
"\n",
"# Apply the function to both datasets\n",
"test_df['Binding-Active site'] = test_df.apply(lambda row: convert_to_binary_list(row['Binding-Active site'], len(row['Sequence'])), axis=1)\n",
"train_df['Binding-Active site'] = train_df.apply(lambda row: convert_to_binary_list(row['Binding-Active site'], len(row['Sequence'])), axis=1)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4cea2656-75eb-4350-b1a6-704c18793473",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Entry</th>\n",
" <th>Protein families</th>\n",
" <th>Binding site</th>\n",
" <th>Active site</th>\n",
" <th>Sequence</th>\n",
" <th>Binding-Active site</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>791321</th>\n",
" <td>A0A0C2CBT0</td>\n",
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
" <td>275; 323; 346</td>\n",
" <td>None</td>\n",
" <td>MFDVFSGHNDAVLCVQYRDQESLAVSGSADNSIKCWDTRTGRPEMT...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1008964</th>\n",
" <td>A0A0N4V212</td>\n",
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
" <td>131; 179; 202</td>\n",
" <td>None</td>\n",
" <td>MVGYGVRARASGYHGRSKFRVKNKRKADKSYAENVSELAADSSRAI...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1009019</th>\n",
" <td>A0A0N4XGU1</td>\n",
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
" <td>73; 121; 178</td>\n",
" <td>None</td>\n",
" <td>MGKKGREQHGNKRTNKSRHADAGDAEPLSSHGEEDSESLDESRDDH...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1837901</th>\n",
" <td>A0A1I8B1G5</td>\n",
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
" <td>40; 88; 111</td>\n",
" <td>None</td>\n",
" <td>MASTDSSQSSDEDAKVEKAKKMPCILAMFDFGQCDPKRCSGRKLCR...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5447097</th>\n",
" <td>A0A6V7USP8</td>\n",
" <td>TDD superfamily, TSR3 family; Protein kinase s...</td>\n",
" <td>61; 109; 132</td>\n",
" <td>None</td>\n",
" <td>MLFMVVPVLIMMQVDVVAIKKMTNTDSSESSGDDAVDDKSKKMPCI...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Entry Protein families \\\n",
"791321 A0A0C2CBT0 TDD superfamily, TSR3 family; Protein kinase s... \n",
"1008964 A0A0N4V212 TDD superfamily, TSR3 family; Protein kinase s... \n",
"1009019 A0A0N4XGU1 TDD superfamily, TSR3 family; Protein kinase s... \n",
"1837901 A0A1I8B1G5 TDD superfamily, TSR3 family; Protein kinase s... \n",
"5447097 A0A6V7USP8 TDD superfamily, TSR3 family; Protein kinase s... \n",
"\n",
" Binding site Active site \\\n",
"791321 275; 323; 346 None \n",
"1008964 131; 179; 202 None \n",
"1009019 73; 121; 178 None \n",
"1837901 40; 88; 111 None \n",
"5447097 61; 109; 132 None \n",
"\n",
" Sequence \\\n",
"791321 MFDVFSGHNDAVLCVQYRDQESLAVSGSADNSIKCWDTRTGRPEMT... \n",
"1008964 MVGYGVRARASGYHGRSKFRVKNKRKADKSYAENVSELAADSSRAI... \n",
"1009019 MGKKGREQHGNKRTNKSRHADAGDAEPLSSHGEEDSESLDESRDDH... \n",
"1837901 MASTDSSQSSDEDAKVEKAKKMPCILAMFDFGQCDPKRCSGRKLCR... \n",
"5447097 MLFMVVPVLIMMQVDVVAIKKMTNTDSSESSGDDAVDDKSKKMPCI... \n",
"\n",
" Binding-Active site \n",
"791321 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"1008964 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"1009019 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"1837901 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"5447097 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "bf55ec46-3685-41a3-a382-46273940ed79",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Entry</th>\n",
" <th>Protein families</th>\n",
" <th>Binding site</th>\n",
" <th>Active site</th>\n",
" <th>Sequence</th>\n",
" <th>Binding-Active site</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>A0A009GI32</td>\n",
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
" <td>452</td>\n",
" <td>MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>A0A009HWM5</td>\n",
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
" <td>452</td>\n",
" <td>MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>A0A009I6Q1</td>\n",
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
" <td>452</td>\n",
" <td>MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>A0A009NCR4</td>\n",
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
" <td>452</td>\n",
" <td>MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>A0A009QK39</td>\n",
" <td>3-hydroxyacyl-CoA dehydrogenase family; Enoyl-...</td>\n",
" <td>298; 326; 345; 402..404; 409; 431; 455; 502</td>\n",
" <td>452</td>\n",
" <td>MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA...</td>\n",
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Entry Protein families \\\n",
"1 A0A009GI32 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"3 A0A009HWM5 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"4 A0A009I6Q1 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"7 A0A009NCR4 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"9 A0A009QK39 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"\n",
" Binding site Active site \\\n",
"1 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"3 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"4 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"7 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"9 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"\n",
" Sequence \\\n",
"1 MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... \n",
"3 MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... \n",
"4 MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA... \n",
"7 MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA... \n",
"9 MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... \n",
"\n",
" Binding-Active site \n",
"1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"4 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1a997e94-2bea-4c56-89f2-f10737c96447",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('065_data/test_labels_chunked_by_family.pkl',\n",
" '065_data/test_sequences_chunked_by_family.pkl',\n",
" '065_data/train_labels_chunked_by_family.pkl',\n",
" '065_data/train_sequences_chunked_by_family.pkl')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pickle\n",
"import random\n",
"\n",
"def split_into_chunks(sequences, labels):\n",
" \"\"\"Split sequences and labels into chunks of size 1000 or less.\"\"\"\n",
" chunk_size = 1000\n",
" new_sequences = []\n",
" new_labels = []\n",
" \n",
" for seq, lbl in zip(sequences, labels):\n",
" if len(seq) > chunk_size:\n",
" # Split the sequence and labels into chunks of size 1000 or less\n",
" for i in range(0, len(seq), chunk_size):\n",
" new_sequences.append(seq[i:i+chunk_size])\n",
" new_labels.append(lbl[i:i+chunk_size])\n",
" else:\n",
" new_sequences.append(seq)\n",
" new_labels.append(lbl)\n",
" \n",
" return new_sequences, new_labels\n",
"\n",
"# Extract the necessary columns to create lists of sequences and labels\n",
"test_sequences_by_family = test_df['Sequence'].tolist()\n",
"test_labels_by_family = test_df['Binding-Active site'].tolist()\n",
"train_sequences_by_family = train_df['Sequence'].tolist()\n",
"train_labels_by_family = train_df['Binding-Active site'].tolist()\n",
"\n",
"# Get the number of samples in each dataset\n",
"num_test_samples = len(test_sequences_by_family)\n",
"num_train_samples = len(train_sequences_by_family)\n",
"\n",
"# Define the percentage of data you want to keep\n",
"percentage_to_keep = 100 # for keeping 6.00% of the data\n",
"\n",
"# Generate random indices representing a percentage of each dataset\n",
"random_test_indices = random.sample(range(num_test_samples), int(num_test_samples * (percentage_to_keep / 100)))\n",
"random_train_indices = random.sample(range(num_train_samples), int(num_train_samples * (percentage_to_keep / 100)))\n",
"\n",
"# Create smaller datasets using the random indices\n",
"test_sequences_small = [test_sequences_by_family[i] for i in random_test_indices]\n",
"test_labels_small = [test_labels_by_family[i] for i in random_test_indices]\n",
"train_sequences_small = [train_sequences_by_family[i] for i in random_train_indices]\n",
"train_labels_small = [train_labels_by_family[i] for i in random_train_indices]\n",
"\n",
"# Apply the function to create new datasets with chunks of size 1000 or less\n",
"test_sequences_chunked, test_labels_chunked = split_into_chunks(test_sequences_small, test_labels_small)\n",
"train_sequences_chunked, train_labels_chunked = split_into_chunks(train_sequences_small, train_labels_small)\n",
"\n",
"# Paths to save the new chunked pickle files\n",
"test_labels_chunked_path = '16M_data/test_labels_chunked_by_family.pkl'\n",
"test_sequences_chunked_path = '16M_data/test_sequences_chunked_by_family.pkl'\n",
"train_labels_chunked_path = '16M_data/train_labels_chunked_by_family.pkl'\n",
"train_sequences_chunked_path = '16M_data/train_sequences_chunked_by_family.pkl'\n",
"\n",
"# Save the chunked datasets as new pickle files\n",
"with open(test_labels_chunked_path, 'wb') as file:\n",
" pickle.dump(test_labels_chunked, file)\n",
"with open(test_sequences_chunked_path, 'wb') as file:\n",
" pickle.dump(test_sequences_chunked, file)\n",
"with open(train_labels_chunked_path, 'wb') as file:\n",
" pickle.dump(train_labels_chunked, file)\n",
"with open(train_sequences_chunked_path, 'wb') as file:\n",
" pickle.dump(train_sequences_chunked, file)\n",
"\n",
"test_labels_chunked_path, test_sequences_chunked_path, train_labels_chunked_path, train_sequences_chunked_path\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6479ec75-c1a2-403c-8139-43e9754cc137",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(220620, 220620, 890637, 890637)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load each pickle file and get the number of entries in each\n",
"with open(test_labels_chunked_path, 'rb') as file:\n",
" test_labels_chunked = pickle.load(file)\n",
" num_test_labels_chunked = len(test_labels_chunked)\n",
"\n",
"with open(test_sequences_chunked_path, 'rb') as file:\n",
" test_sequences_chunked = pickle.load(file)\n",
" num_test_sequences_chunked = len(test_sequences_chunked)\n",
"\n",
"with open(train_labels_chunked_path, 'rb') as file:\n",
" train_labels_chunked = pickle.load(file)\n",
" num_train_labels_chunked = len(train_labels_chunked)\n",
"\n",
"with open(train_sequences_chunked_path, 'rb') as file:\n",
" train_sequences_chunked = pickle.load(file)\n",
" num_train_sequences_chunked = len(train_sequences_chunked)\n",
"\n",
"num_test_labels_chunked, num_test_sequences_chunked, num_train_labels_chunked, num_train_sequences_chunked\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "da7df429-62ab-4b8e-b3dd-7c5a9eb14921",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "esm2_binding_py38b",
"language": "python",
"name": "esm2_binding_py38b"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.17"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|