File size: 2,336 Bytes
b71c77d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-finetuned-resume-summarizer-bathcsize-8-epoch-9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-finetuned-resume-summarizer-bathcsize-8-epoch-9
This model is a fine-tuned version of [Ameer05/tokenizer-repo](https://huggingface.co/Ameer05/tokenizer-repo) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5988
- Rouge1: 54.4865
- Rouge2: 45.2321
- Rougel: 50.0237
- Rougelsum: 53.2463
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 0.3463 | 1.0 | 44 | 2.0015 | 50.2382 | 40.3332 | 45.6831 | 49.1811 |
| 0.2771 | 2.0 | 88 | 2.0433 | 58.3265 | 50.1555 | 54.3681 | 56.9592 |
| 0.172 | 3.0 | 132 | 2.2077 | 55.9801 | 47.6352 | 51.9102 | 54.3347 |
| 0.1251 | 4.0 | 176 | 2.1834 | 53.3525 | 44.2643 | 49.9253 | 52.0145 |
| 0.0901 | 5.0 | 220 | 2.2857 | 56.7259 | 46.7879 | 52.3245 | 55.16 |
| 0.0506 | 6.0 | 264 | 2.5131 | 53.8128 | 44.9024 | 50.4617 | 52.8586 |
| 0.0434 | 7.0 | 308 | 2.5274 | 52.076 | 41.8135 | 47.3822 | 50.2634 |
| 0.0269 | 8.0 | 352 | 2.6374 | 54.7639 | 45.51 | 50.2608 | 53.6006 |
| 0.0147 | 9.0 | 396 | 2.5988 | 54.4865 | 45.2321 | 50.0237 | 53.2463 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.9.1
- Datasets 2.0.0
- Tokenizers 0.10.3
|