File size: 2,032 Bytes
9c11183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Question Answering NLU

Question Answering NLU (QANLU) is an approach that maps the NLU task into question answering, 
leveraging pre-trained question-answering models to perform well on few-shot settings. Instead of 
training an intent classifier or a slot tagger, for example, we can ask the model intent- and 
slot-related questions in natural language: 

```
Context : I'm looking for a cheap flight to Boston.

Question: Is the user looking to book a flight?
Answer  : Yes

Question: Is the user asking about departure time?
Answer  : No

Question: What price is the user looking for?
Answer  : cheap

Question: Where is the user flying from?
Answer  : (empty)
```

Thus, by asking questions for each intent and slot in natural language, we can effectively construct an NLU hypothesis. For more details,
please read the paper: 
[Language model is all you need: Natural language understanding as question answering](https://assets.amazon.science/33/ea/800419b24a09876601d8ab99bfb9/language-model-is-all-you-need-natural-language-understanding-as-question-answering.pdf).

To see how to train a QANLU model, visit the [Amazon Science repository](https://github.com/amazon-research/question-answering-nlu)

## Use in transformers:

'''
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
  
tokenizer = AutoTokenizer.from_pretrained("AmazonScience/qanlu", use_auth_token=True)

model = AutoModelForQuestionAnswering.from_pretrained("AmazonScience/qanlu", use_auth_token=True)
'''

## Citation
If you use this work, please cite:

```
@inproceedings{namazifar2021language,
  title={Language model is all you need: Natural language understanding as question answering},
  author={Namazifar, Mahdi and Papangelis, Alexandros and Tur, Gokhan and Hakkani-T{\"u}r, Dilek},
  booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={7803--7807},
  year={2021},
  organization={IEEE}
}
```

## License

This library is licensed under the CC BY NC License.