File size: 5,116 Bytes
879577c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "f564c670-1fa4-4b68-91e9-344e0c29e268",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using cache found in C:\\Users\\胡逸飞/.cache\\torch\\hub\\isl-org_ZoeDepth_main\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"img_size [384, 512]\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using cache found in C:\\Users\\胡逸飞/.cache\\torch\\hub\\intel-isl_MiDaS_master\n",
"D:\\SubDiffusion\\venv\\lib\\site-packages\\torch\\functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ..\\aten\\src\\ATen\\native\\TensorShape.cpp:3484.)\n",
" return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Params passed to Resize transform:\n",
"\twidth: 512\n",
"\theight: 384\n",
"\tresize_target: True\n",
"\tkeep_aspect_ratio: True\n",
"\tensure_multiple_of: 32\n",
"\tresize_method: minimal\n",
"Using pretrained resource url::https://github.com/isl-org/ZoeDepth/releases/download/v1.0/ZoeD_M12_N.pt\n",
"Loaded successfully\n"
]
}
],
"source": [
"import torch\n",
"import os\n",
"import torchvision.transforms as transforms\n",
"import matplotlib.pyplot as plt\n",
"from PIL import Image\n",
"import numpy as np\n",
"import cv2\n",
"import matplotlib.cm as cm\n",
"from einops import rearrange\n",
"repo = \"isl-org/ZoeDepth\"\n",
"# Zoe_N\n",
"model_zoe_n = torch.hub.load(repo, \"ZoeD_N\", pretrained=True)\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"model = model_zoe_n.to(DEVICE)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "309a4ce8-72d5-4d76-8eee-a85c66e5ae79",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"image = Image.open('7.jpg')\n",
"# 调整图像到正方形\n",
"max_size = 960\n",
"if image.size[0] > image.size[1]:\n",
" wpercent = max_size / float(image.size[0])\n",
" hsize = int((float(image.size[1]) * float(wpercent)))\n",
" image = image.resize((max_size, hsize), Image.Resampling.BILINEAR)\n",
"else:\n",
" hpercent = max_size / float(image.size[1])\n",
" wsize = int((float(image.size[0]) * float(hpercent)))\n",
" image = image.resize((wsize, max_size), Image.Resampling.BILINEAR)\n",
"\n",
" # 创建一个n1*n1的纯黑色图像\n",
" background = Image.new('RGB', (960, 960), (0, 0, 0))\n",
"\n",
"# 计算输入图像在背景图像中的位置\n",
"bg_w, bg_h = background.size\n",
"img_w, img_h = image.size\n",
"offset = ((bg_w - img_w) // 2, (bg_h - img_h) // 2)\n",
"\n",
"# 将输入图像放在背景图像中\n",
"background.paste(image, offset)\n",
"input_image=np.array(background)\n",
"\n",
"# 将图像转换为张量\n",
"#input_image = transforms.ToTensor()(background).unsqueeze(0).to(device)\n",
"image_depth = input_image\n",
"with torch.no_grad():\n",
" image_depth = torch.from_numpy(image_depth).float().to(device)\n",
" image_depth = image_depth / 255.0\n",
" image_depth = rearrange(image_depth, 'h w c -> 1 c h w')\n",
" depth = model.infer(image_depth)\n",
"\n",
" depth = depth[0, 0].cpu().numpy()\n",
"\n",
" vmin = np.percentile(depth, 2)\n",
" vmax = np.percentile(depth, 85)\n",
"\n",
" depth -= vmin\n",
" depth /= vmax - vmin\n",
" depth = 1.0 - depth\n",
" depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8)\n",
"cv2.imwrite('depth_image.png', depth_image)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "f0786ef5-0413-41cd-b54f-e012fc178aca",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 42,
"id": "1e802ea9-0905-43d1-8ad2-5195c6a3054d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|