ToastyPigeon commited on
Commit
15bd2b3
1 Parent(s): 829c29a

Training in progress, epoch 1, checkpoint

Browse files
last-checkpoint/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: inflatebot/MN-12B-Mag-Mell-R1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.0
last-checkpoint/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "inflatebot/MN-12B-Mag-Mell-R1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "gate_proj",
25
+ "q_proj",
26
+ "o_proj",
27
+ "down_proj",
28
+ "v_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
last-checkpoint/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c01cbf065547f2ab6915a565e816f5afcf4b7ea7de7675676becd6ec768b42f0
3
+ size 228141160
last-checkpoint/global_step85/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec8a08125adfca05fb0866c92a3854112811ad215f828679d2fe3f15e9959257
3
+ size 344823216
last-checkpoint/global_step85/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07d5656f282a808c6c5e452809113e2a423a1cf986df48418f7b513bf3e883d2
3
+ size 344823216
last-checkpoint/global_step85/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fd715933261a7486aef13f573b135ef39ccb6f159ad8c1ade47dce836d3255d
3
+ size 174532278
last-checkpoint/global_step85/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ede717c6b3dbeeca391026c94026525d87b2c00dc2de6e1ade43557001cd9dfd
3
+ size 174532278
last-checkpoint/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step85
last-checkpoint/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a89089c99a6a495dd3055446f9af55ff8e04b227ec512cfca22d57b75dbad2c
3
+ size 14512
last-checkpoint/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18afa475e15059bee8ac1db54f451b780d1a8919fbde2de61a7e2d421a6ef11f
3
+ size 14512
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:923b0949fc361017dd998cc8c1bee86f67ffa2891a88a04fa3966dc2db37a901
3
+ size 1064
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
last-checkpoint/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b4c8fcd33487a449c07f423d47adb035bba8347ccf13eb074b4d1fef8acf919
3
+ size 17078288
last-checkpoint/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,676 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0119047619047619,
5
+ "eval_steps": 17,
6
+ "global_step": 85,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.011904761904761904,
13
+ "grad_norm": 0.9544092626224188,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.5697,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.011904761904761904,
20
+ "eval_loss": 2.4926321506500244,
21
+ "eval_runtime": 84.5031,
22
+ "eval_samples_per_second": 0.237,
23
+ "eval_steps_per_second": 0.118,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.023809523809523808,
28
+ "grad_norm": 0.8699237107804378,
29
+ "learning_rate": 4e-05,
30
+ "loss": 2.5045,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.03571428571428571,
35
+ "grad_norm": 0.8471542581095772,
36
+ "learning_rate": 6e-05,
37
+ "loss": 2.444,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.047619047619047616,
42
+ "grad_norm": 0.6760804223199605,
43
+ "learning_rate": 8e-05,
44
+ "loss": 2.4135,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.05952380952380952,
49
+ "grad_norm": 0.3645239609928067,
50
+ "learning_rate": 0.0001,
51
+ "loss": 2.5502,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.07142857142857142,
56
+ "grad_norm": 1.0191533159070523,
57
+ "learning_rate": 9.996530663083255e-05,
58
+ "loss": 2.4001,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.08333333333333333,
63
+ "grad_norm": 0.7536562391615925,
64
+ "learning_rate": 9.986128001799077e-05,
65
+ "loss": 2.4241,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.09523809523809523,
70
+ "grad_norm": 0.47058800200722606,
71
+ "learning_rate": 9.96880805629717e-05,
72
+ "loss": 2.3783,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.10714285714285714,
77
+ "grad_norm": 0.42488376754431106,
78
+ "learning_rate": 9.94459753267812e-05,
79
+ "loss": 2.4496,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.11904761904761904,
84
+ "grad_norm": 0.2964058549391389,
85
+ "learning_rate": 9.913533761814537e-05,
86
+ "loss": 2.4123,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.13095238095238096,
91
+ "grad_norm": 0.274543387752409,
92
+ "learning_rate": 9.875664641789545e-05,
93
+ "loss": 2.3733,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.14285714285714285,
98
+ "grad_norm": 0.4783689100368163,
99
+ "learning_rate": 9.831048564041413e-05,
100
+ "loss": 2.3535,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.15476190476190477,
105
+ "grad_norm": 1.3750248629360309,
106
+ "learning_rate": 9.779754323328192e-05,
107
+ "loss": 2.2893,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.16666666666666666,
112
+ "grad_norm": 0.3128166343225632,
113
+ "learning_rate": 9.72186101165118e-05,
114
+ "loss": 2.3495,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.17857142857142858,
119
+ "grad_norm": 0.2978734846133746,
120
+ "learning_rate": 9.657457896300791e-05,
121
+ "loss": 2.3489,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.19047619047619047,
126
+ "grad_norm": 0.3296693493448657,
127
+ "learning_rate": 9.586644282212866e-05,
128
+ "loss": 2.2308,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.20238095238095238,
133
+ "grad_norm": 0.35894978658993554,
134
+ "learning_rate": 9.509529358847655e-05,
135
+ "loss": 2.2991,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.20238095238095238,
140
+ "eval_loss": 2.3356270790100098,
141
+ "eval_runtime": 84.8559,
142
+ "eval_samples_per_second": 0.236,
143
+ "eval_steps_per_second": 0.118,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.21428571428571427,
148
+ "grad_norm": 0.556925508907772,
149
+ "learning_rate": 9.426232031827588e-05,
150
+ "loss": 2.3245,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.2261904761904762,
155
+ "grad_norm": 0.2596512913089154,
156
+ "learning_rate": 9.336880739593416e-05,
157
+ "loss": 2.2259,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.23809523809523808,
162
+ "grad_norm": 0.23810127330848288,
163
+ "learning_rate": 9.241613255361455e-05,
164
+ "loss": 2.3589,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.25,
169
+ "grad_norm": 0.2486358353351647,
170
+ "learning_rate": 9.140576474687264e-05,
171
+ "loss": 2.3491,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.2619047619047619,
176
+ "grad_norm": 0.2569987072732923,
177
+ "learning_rate": 9.033926188963352e-05,
178
+ "loss": 2.3966,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.27380952380952384,
183
+ "grad_norm": 0.2818819247779108,
184
+ "learning_rate": 8.921826845200139e-05,
185
+ "loss": 2.319,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.2857142857142857,
190
+ "grad_norm": 0.3051353561467919,
191
+ "learning_rate": 8.804451292460585e-05,
192
+ "loss": 2.3764,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.2976190476190476,
197
+ "grad_norm": 0.28378754273403445,
198
+ "learning_rate": 8.681980515339464e-05,
199
+ "loss": 2.2516,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.30952380952380953,
204
+ "grad_norm": 0.23671187368883853,
205
+ "learning_rate": 8.554603354898238e-05,
206
+ "loss": 2.213,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.32142857142857145,
211
+ "grad_norm": 0.2366234206615884,
212
+ "learning_rate": 8.422516217485826e-05,
213
+ "loss": 2.2728,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.3333333333333333,
218
+ "grad_norm": 0.29302002288238443,
219
+ "learning_rate": 8.285922771894254e-05,
220
+ "loss": 2.3657,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.34523809523809523,
225
+ "grad_norm": 0.27328082985574287,
226
+ "learning_rate": 8.14503363531613e-05,
227
+ "loss": 2.293,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.35714285714285715,
232
+ "grad_norm": 0.2629290179604872,
233
+ "learning_rate": 8.000066048588211e-05,
234
+ "loss": 2.3183,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.36904761904761907,
239
+ "grad_norm": 0.2769635403979301,
240
+ "learning_rate": 7.85124354122177e-05,
241
+ "loss": 2.2946,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.38095238095238093,
246
+ "grad_norm": 0.2322670372127043,
247
+ "learning_rate": 7.698795586736298e-05,
248
+ "loss": 2.1595,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.39285714285714285,
253
+ "grad_norm": 0.2733558129218707,
254
+ "learning_rate": 7.542957248827961e-05,
255
+ "loss": 2.3469,
256
+ "step": 33
257
+ },
258
+ {
259
+ "epoch": 0.40476190476190477,
260
+ "grad_norm": 0.24834436859405049,
261
+ "learning_rate": 7.383968818918426e-05,
262
+ "loss": 2.199,
263
+ "step": 34
264
+ },
265
+ {
266
+ "epoch": 0.40476190476190477,
267
+ "eval_loss": 2.299875259399414,
268
+ "eval_runtime": 85.3272,
269
+ "eval_samples_per_second": 0.234,
270
+ "eval_steps_per_second": 0.117,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.4166666666666667,
275
+ "grad_norm": 0.27121410447461325,
276
+ "learning_rate": 7.222075445642904e-05,
277
+ "loss": 2.1842,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.42857142857142855,
282
+ "grad_norm": 0.31502528289581183,
283
+ "learning_rate": 7.057526756848719e-05,
284
+ "loss": 2.2298,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.44047619047619047,
289
+ "grad_norm": 0.24007323900338268,
290
+ "learning_rate": 6.890576474687263e-05,
291
+ "loss": 2.4688,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.4523809523809524,
296
+ "grad_norm": 0.2608935989516304,
297
+ "learning_rate": 6.721482024392835e-05,
298
+ "loss": 2.2838,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.4642857142857143,
303
+ "grad_norm": 0.29766343141422075,
304
+ "learning_rate": 6.550504137351576e-05,
305
+ "loss": 2.1777,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.47619047619047616,
310
+ "grad_norm": 0.29532812127434044,
311
+ "learning_rate": 6.377906449072578e-05,
312
+ "loss": 2.2005,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.4880952380952381,
317
+ "grad_norm": 0.25346420479015375,
318
+ "learning_rate": 6.203955092681039e-05,
319
+ "loss": 2.2493,
320
+ "step": 41
321
+ },
322
+ {
323
+ "epoch": 0.5,
324
+ "grad_norm": 0.2733242470847782,
325
+ "learning_rate": 6.0289182885602704e-05,
326
+ "loss": 2.264,
327
+ "step": 42
328
+ },
329
+ {
330
+ "epoch": 0.5119047619047619,
331
+ "grad_norm": 0.2832250530342488,
332
+ "learning_rate": 5.8530659307753036e-05,
333
+ "loss": 2.3321,
334
+ "step": 43
335
+ },
336
+ {
337
+ "epoch": 0.5238095238095238,
338
+ "grad_norm": 0.23261141435639465,
339
+ "learning_rate": 5.6766691709158096e-05,
340
+ "loss": 2.2584,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.5357142857142857,
345
+ "grad_norm": 0.24734669584168956,
346
+ "learning_rate": 5.500000000000001e-05,
347
+ "loss": 2.3196,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.5476190476190477,
352
+ "grad_norm": 0.3610266226821954,
353
+ "learning_rate": 5.3233308290841935e-05,
354
+ "loss": 2.2857,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.5595238095238095,
359
+ "grad_norm": 0.33827980816046865,
360
+ "learning_rate": 5.1469340692246995e-05,
361
+ "loss": 2.099,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.5714285714285714,
366
+ "grad_norm": 0.25979841286218003,
367
+ "learning_rate": 4.9710817114397314e-05,
368
+ "loss": 2.2922,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.5833333333333334,
373
+ "grad_norm": 0.2966248351989265,
374
+ "learning_rate": 4.7960449073189606e-05,
375
+ "loss": 2.3001,
376
+ "step": 49
377
+ },
378
+ {
379
+ "epoch": 0.5952380952380952,
380
+ "grad_norm": 0.2649319822020958,
381
+ "learning_rate": 4.6220935509274235e-05,
382
+ "loss": 2.0389,
383
+ "step": 50
384
+ },
385
+ {
386
+ "epoch": 0.6071428571428571,
387
+ "grad_norm": 0.3040829342691192,
388
+ "learning_rate": 4.4494958626484276e-05,
389
+ "loss": 2.3336,
390
+ "step": 51
391
+ },
392
+ {
393
+ "epoch": 0.6071428571428571,
394
+ "eval_loss": 2.2863776683807373,
395
+ "eval_runtime": 85.1891,
396
+ "eval_samples_per_second": 0.235,
397
+ "eval_steps_per_second": 0.117,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 0.6190476190476191,
402
+ "grad_norm": 0.25961905620657355,
403
+ "learning_rate": 4.278517975607167e-05,
404
+ "loss": 2.257,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 0.6309523809523809,
409
+ "grad_norm": 0.2520680871081291,
410
+ "learning_rate": 4.109423525312738e-05,
411
+ "loss": 2.3646,
412
+ "step": 53
413
+ },
414
+ {
415
+ "epoch": 0.6428571428571429,
416
+ "grad_norm": 0.2563922206690732,
417
+ "learning_rate": 3.942473243151281e-05,
418
+ "loss": 2.1605,
419
+ "step": 54
420
+ },
421
+ {
422
+ "epoch": 0.6547619047619048,
423
+ "grad_norm": 0.23710847982590777,
424
+ "learning_rate": 3.777924554357096e-05,
425
+ "loss": 2.2253,
426
+ "step": 55
427
+ },
428
+ {
429
+ "epoch": 0.6666666666666666,
430
+ "grad_norm": 0.2358700389619207,
431
+ "learning_rate": 3.616031181081575e-05,
432
+ "loss": 2.2685,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.6785714285714286,
437
+ "grad_norm": 0.25688706639252046,
438
+ "learning_rate": 3.45704275117204e-05,
439
+ "loss": 2.306,
440
+ "step": 57
441
+ },
442
+ {
443
+ "epoch": 0.6904761904761905,
444
+ "grad_norm": 0.28553196847033946,
445
+ "learning_rate": 3.301204413263704e-05,
446
+ "loss": 2.394,
447
+ "step": 58
448
+ },
449
+ {
450
+ "epoch": 0.7023809523809523,
451
+ "grad_norm": 0.24843175796925013,
452
+ "learning_rate": 3.1487564587782306e-05,
453
+ "loss": 2.2661,
454
+ "step": 59
455
+ },
456
+ {
457
+ "epoch": 0.7142857142857143,
458
+ "grad_norm": 0.24662937375083732,
459
+ "learning_rate": 2.9999339514117912e-05,
460
+ "loss": 2.3021,
461
+ "step": 60
462
+ },
463
+ {
464
+ "epoch": 0.7261904761904762,
465
+ "grad_norm": 0.3580921716501969,
466
+ "learning_rate": 2.854966364683872e-05,
467
+ "loss": 2.2545,
468
+ "step": 61
469
+ },
470
+ {
471
+ "epoch": 0.7380952380952381,
472
+ "grad_norm": 0.2601716169771101,
473
+ "learning_rate": 2.7140772281057468e-05,
474
+ "loss": 2.4256,
475
+ "step": 62
476
+ },
477
+ {
478
+ "epoch": 0.75,
479
+ "grad_norm": 0.2729633905977987,
480
+ "learning_rate": 2.577483782514174e-05,
481
+ "loss": 2.4064,
482
+ "step": 63
483
+ },
484
+ {
485
+ "epoch": 0.7619047619047619,
486
+ "grad_norm": 0.35811707072589155,
487
+ "learning_rate": 2.445396645101762e-05,
488
+ "loss": 2.3352,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 0.7738095238095238,
493
+ "grad_norm": 0.27727284509496897,
494
+ "learning_rate": 2.3180194846605367e-05,
495
+ "loss": 2.5192,
496
+ "step": 65
497
+ },
498
+ {
499
+ "epoch": 0.7857142857142857,
500
+ "grad_norm": 0.2803742538067055,
501
+ "learning_rate": 2.195548707539416e-05,
502
+ "loss": 2.3278,
503
+ "step": 66
504
+ },
505
+ {
506
+ "epoch": 0.7976190476190477,
507
+ "grad_norm": 0.25468361529041794,
508
+ "learning_rate": 2.0781731547998614e-05,
509
+ "loss": 2.2444,
510
+ "step": 67
511
+ },
512
+ {
513
+ "epoch": 0.8095238095238095,
514
+ "grad_norm": 0.4651703351900801,
515
+ "learning_rate": 1.966073811036649e-05,
516
+ "loss": 2.1637,
517
+ "step": 68
518
+ },
519
+ {
520
+ "epoch": 0.8095238095238095,
521
+ "eval_loss": 2.2794995307922363,
522
+ "eval_runtime": 84.9665,
523
+ "eval_samples_per_second": 0.235,
524
+ "eval_steps_per_second": 0.118,
525
+ "step": 68
526
+ },
527
+ {
528
+ "epoch": 0.8214285714285714,
529
+ "grad_norm": 0.2419165423914357,
530
+ "learning_rate": 1.8594235253127375e-05,
531
+ "loss": 2.1522,
532
+ "step": 69
533
+ },
534
+ {
535
+ "epoch": 0.8333333333333334,
536
+ "grad_norm": 0.5579840019563456,
537
+ "learning_rate": 1.758386744638546e-05,
538
+ "loss": 2.3066,
539
+ "step": 70
540
+ },
541
+ {
542
+ "epoch": 0.8452380952380952,
543
+ "grad_norm": 0.33911931890037594,
544
+ "learning_rate": 1.6631192604065855e-05,
545
+ "loss": 2.1133,
546
+ "step": 71
547
+ },
548
+ {
549
+ "epoch": 0.8571428571428571,
550
+ "grad_norm": 0.23476812251683926,
551
+ "learning_rate": 1.573767968172413e-05,
552
+ "loss": 2.368,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 0.8690476190476191,
557
+ "grad_norm": 0.2783320668382118,
558
+ "learning_rate": 1.490470641152345e-05,
559
+ "loss": 2.2878,
560
+ "step": 73
561
+ },
562
+ {
563
+ "epoch": 0.8809523809523809,
564
+ "grad_norm": 0.28487408965300465,
565
+ "learning_rate": 1.413355717787134e-05,
566
+ "loss": 2.1781,
567
+ "step": 74
568
+ },
569
+ {
570
+ "epoch": 0.8928571428571429,
571
+ "grad_norm": 0.2342499729484135,
572
+ "learning_rate": 1.3425421036992098e-05,
573
+ "loss": 2.2248,
574
+ "step": 75
575
+ },
576
+ {
577
+ "epoch": 0.9047619047619048,
578
+ "grad_norm": 0.3276211876914205,
579
+ "learning_rate": 1.2781389883488218e-05,
580
+ "loss": 2.0437,
581
+ "step": 76
582
+ },
583
+ {
584
+ "epoch": 0.9166666666666666,
585
+ "grad_norm": 0.23498872906974066,
586
+ "learning_rate": 1.2202456766718093e-05,
587
+ "loss": 2.1563,
588
+ "step": 77
589
+ },
590
+ {
591
+ "epoch": 0.9285714285714286,
592
+ "grad_norm": 0.24216692635411755,
593
+ "learning_rate": 1.168951435958588e-05,
594
+ "loss": 2.3686,
595
+ "step": 78
596
+ },
597
+ {
598
+ "epoch": 0.9404761904761905,
599
+ "grad_norm": 0.24267162761351987,
600
+ "learning_rate": 1.1243353582104556e-05,
601
+ "loss": 2.1837,
602
+ "step": 79
603
+ },
604
+ {
605
+ "epoch": 0.9523809523809523,
606
+ "grad_norm": 0.25968272691520106,
607
+ "learning_rate": 1.0864662381854632e-05,
608
+ "loss": 2.2079,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 0.9642857142857143,
613
+ "grad_norm": 0.2437768972745406,
614
+ "learning_rate": 1.0554024673218807e-05,
615
+ "loss": 2.1451,
616
+ "step": 81
617
+ },
618
+ {
619
+ "epoch": 0.9761904761904762,
620
+ "grad_norm": 0.315983035460693,
621
+ "learning_rate": 1.0311919437028318e-05,
622
+ "loss": 2.3015,
623
+ "step": 82
624
+ },
625
+ {
626
+ "epoch": 0.9880952380952381,
627
+ "grad_norm": 0.2704189055909359,
628
+ "learning_rate": 1.0138719982009242e-05,
629
+ "loss": 2.2505,
630
+ "step": 83
631
+ },
632
+ {
633
+ "epoch": 1.0,
634
+ "grad_norm": 0.2530162105544282,
635
+ "learning_rate": 1.003469336916747e-05,
636
+ "loss": 2.3508,
637
+ "step": 84
638
+ },
639
+ {
640
+ "epoch": 1.0119047619047619,
641
+ "grad_norm": 0.2513361659364113,
642
+ "learning_rate": 1e-05,
643
+ "loss": 2.2057,
644
+ "step": 85
645
+ },
646
+ {
647
+ "epoch": 1.0119047619047619,
648
+ "eval_loss": 2.2760229110717773,
649
+ "eval_runtime": 85.0943,
650
+ "eval_samples_per_second": 0.235,
651
+ "eval_steps_per_second": 0.118,
652
+ "step": 85
653
+ }
654
+ ],
655
+ "logging_steps": 1,
656
+ "max_steps": 85,
657
+ "num_input_tokens_seen": 0,
658
+ "num_train_epochs": 1,
659
+ "save_steps": 500,
660
+ "stateful_callbacks": {
661
+ "TrainerControl": {
662
+ "args": {
663
+ "should_epoch_stop": false,
664
+ "should_evaluate": false,
665
+ "should_log": false,
666
+ "should_save": true,
667
+ "should_training_stop": true
668
+ },
669
+ "attributes": {}
670
+ }
671
+ },
672
+ "total_flos": 50739334348800.0,
673
+ "train_batch_size": 1,
674
+ "trial_name": null,
675
+ "trial_params": null
676
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c44a0f2c9d2ec98f44eb784396ebb6d033f0108a4702e31b64f27d55e6df44d
3
+ size 8184
last-checkpoint/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)