File size: 96,489 Bytes
e931ecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1077240
- loss:MultipleNegativesRankingLoss
base_model: Qwen/Qwen2.5-0.5B-Instruct
widget:
- source_sentence: Who is the father of philosophy?
sentences:
- 'Charles Sanders Peirce
Charles Sanders Peirce (/pɜːrs/[9] "purse"; 10September 1839 – 19April 1914) was
an American philosopher, logician, mathematician, and scientist who is sometimes
known as "the father of pragmatism". He was educated as a chemist and employed
as a scientist for 30 years. Today he is appreciated largely for his contributions
to logic, mathematics, philosophy, scientific methodology, and semiotics, and
for his founding of pragmatism.'
- 'Georg Wilhelm Friedrich Hegel
According to Hegel, "Heraclitus is the one who first declared the nature of the
infinite and first grasped nature as in itself infinite, that is, its essence
as process. The origin of philosophy is to be dated from Heraclitus. His is the
persistent Idea that is the same in all philosophers up to the present day, as
it was the Idea of Plato and Aristotle". For Hegel, Heraclitus''s great achievements
were to have understood the nature of the infinite, which for Hegel includes understanding
the inherent contradictoriness and negativity of reality; and to have grasped
that reality is becoming or process and that "being" and "nothingness" are mere
empty abstractions. According to Hegel, Heraclitus''s "obscurity" comes from his
being a true (in Hegel''s terms "speculative") philosopher who grasped the ultimate
philosophical truth and therefore expressed himself in a way that goes beyond
the abstract and limited nature of common sense and is difficult to grasp by those
who operate within common sense. Hegel asserted that in Heraclitus he had an antecedent
for his logic: "[...] there is no proposition of Heraclitus which I have not adopted
in my logic".'
- 'History of nuclear weapons
The notion of using a fission weapon to ignite a process of nuclear fusion can
be dated back to 1942. At the first major theoretical conference on the development
of an atomic bomb hosted by J. Robert Oppenheimer at the University of California,
Berkeley, participant Edward Teller directed the majority of the discussion towards
Enrico Fermi''s idea of a "Super" bomb that would use the same reactions that
powered the Sun itself.'
- source_sentence: When was Father's Day first celebrated in America?
sentences:
- 'Father''s Day (United States)
Father''s Day was founded in Spokane, Washington at the YMCA in 1910 by Sonora
Smart Dodd, who was born in Arkansas.[4] Its first celebration was in the Spokane
YMCA on June 19, 1910.[4][5] Her father, the Civil War veteran William Jackson
Smart, was a single parent who raised his six children there.[4] After hearing
a sermon about Jarvis'' Mother''s Day at Central Methodist Episcopal Church in
1909, she told her pastor that fathers should have a similar holiday honoring
them.[4][6] Although she initially suggested June 5, her father''s birthday, the
pastors did not have enough time to prepare their sermons, and the celebration
was deferred to the third Sunday of June.[7][8]'
- 'Father''s Day
In [[Peru]], Father''s Day is celebrated on the third Sunday of June and is not
a public holiday. People usually give a present to their fathers and spend time
with him mostly during a family meal.'
- 'Sacramento River
The Sacramento and its wide natural floodplain were once abundant in fish and
other aquatic creatures, notably one of the southernmost large runs of chinook
salmon in North America. For about 12,000 years, humans have depended on the vast
natural resources of the watershed, which had one of the densest Native American
populations in California. The river has provided a route for trade and travel
since ancient times. Hundreds of tribes sharing regional customs and traditions
inhabited the Sacramento Valley, first coming into contact with European explorers
in the late 1700s. The Spanish explorer Gabriel Moraga named the river Rio de
los Sacramentos in 1808, later shortened and anglicized into Sacramento.'
- source_sentence: What is the population of Austria in 2018?
sentences:
- 'Utah State Capitol
The Utah State Capitol is the house of government for the U.S. state of Utah.
The building houses the chambers and offices of the Utah State Legislature, the
offices of the Governor, Lieutenant Governor, Attorney General, the State Auditor
and their staffs. The capitol is the main building of the Utah State Capitol Complex,
which is located on Capitol Hill, overlooking downtown Salt Lake City.'
- 'Same-sex marriage in Austria
A September 2018 poll for "Österreich" found that 74% of Austrians supported same-sex
marriage and 26% were against.'
- 'Demographics of Austria
Population 8,793,370 (July 2018 est.) country comparison to the world: 96th'
- source_sentence: What language family is Malay?
sentences:
- 'Malay language
Malay is a member of the Austronesian family of languages, which includes languages
from Southeast Asia and the Pacific Ocean, with a smaller number in continental
Asia. Malagasy, a geographic outlier spoken in Madagascar in the Indian Ocean,
is also a member of this language family. Although each language of the family
is mutually unintelligible, their similarities are rather striking. Many roots
have come virtually unchanged from their common ancestor, Proto-Austronesian language.
There are many cognates found in the languages'' words for kinship, health, body
parts and common animals. Numbers, especially, show remarkable similarities.'
- 'Filipinos of Malay descent
In the Philippines, there is misconception and often mixing between the two definitions.
Filipinos consider Malays as being the natives of the Philippines, Indonesia,
Malaysia and Brunei. Consequently, Filipinos consider themselves Malay when in
reality, they are referring to the Malay Race. Filipinos in Singapore also prefer
to be considered Malay, but their desire to be labeled as part of the ethnic group
was rejected by the Singaporean government. Paradoxically, a minor percentage
of Filipinos prefer the Spanish influence and may associate themselves with being
Hispanic, and have made no realistic attempts to promote and/or revive the Malay
language in the Philippines.'
- 'Preferred provider organization
In health insurance in the United States, a preferred provider organization (PPO),
sometimes referred to as a participating provider organization or preferred provider
option, is a managed care organization of medical doctors, hospitals, and other
health care providers who have agreed with an insurer or a third-party administrator
to provide health care at reduced rates to the insurer''s or administrator''s
clients.'
- source_sentence: When was ABC formed?
sentences:
- 'American Broadcasting Company
ABC launched as a radio network on October 12, 1943, serving as the successor
to the NBC Blue Network, which had been purchased by Edward J. Noble. It extended
its operations to television in 1948, following in the footsteps of established
broadcast networks CBS and NBC. In the mid-1950s, ABC merged with United Paramount
Theatres, a chain of movie theaters that formerly operated as a subsidiary of
Paramount Pictures. Leonard Goldenson, who had been the head of UPT, made the
new television network profitable by helping develop and greenlight many successful
series. In the 1980s, after purchasing an 80% interest in cable sports channel
ESPN, the network''s corporate parent, American Broadcasting Companies, Inc.,
merged with Capital Cities Communications, owner of several print publications,
and television and radio stations. In 1996, most of Capital Cities/ABC''s assets
were purchased by The Walt Disney Company.'
- 'Roman concrete
Roman concrete, also called opus caementicium, was a material used in construction
during the late Roman Republic until the fading of the Roman Empire. Roman concrete
was based on a hydraulic-setting cement. Recently, it has been found that it materially
differs in several ways from modern concrete which is based on Portland cement.
Roman concrete is durable due to its incorporation of volcanic ash, which prevents
cracks from spreading. By the middle of the 1st century, the material was used
frequently, often brick-faced, although variations in aggregate allowed different
arrangements of materials. Further innovative developments in the material, called
the Concrete Revolution, contributed to structurally complicated forms, such as
the Pantheon dome, the world''s largest and oldest unreinforced concrete dome.[1]'
- 'Americans Battling Communism
Americans Battling Communism, Inc. (ABC) was an anti-communist organization created
following an October 1947 speech by Pennsylvania Judge Blair Gunther that called
for an "ABC movement" to educate America about communism. Chartered in November
1947 by Harry Alan Sherman, a local lawyer active in various anti-communist organizations,
the group took part in such activities as blacklisting by disclosing the names
of people suspected of being communists. Its members included local judges and
lawyers active in the McCarthy-era prosecution of communists.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on Qwen/Qwen2.5-0.5B-Instruct
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 896
type: sts-dev-896
metrics:
- type: pearson_cosine
value: 0.7619096916737289
name: Pearson Cosine
- type: spearman_cosine
value: 0.7685786786451259
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: 0.7599369650510641
name: Pearson Cosine
- type: spearman_cosine
value: 0.7672126817520759
name: Spearman Cosine
---
# SentenceTransformer based on Qwen/Qwen2.5-0.5B-Instruct
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct). It maps sentences & paragraphs to a 896-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) <!-- at revision 7ae557604adf67be50417f59c2c2f167def9a775 -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 896 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: Qwen2Model
(1): Pooling({'word_embedding_dimension': 896, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AlexWortega/qwen7k")
# Run inference
sentences = [
'When was ABC formed?',
"American Broadcasting Company\nABC launched as a radio network on October 12, 1943, serving as the successor to the NBC Blue Network, which had been purchased by Edward J. Noble. It extended its operations to television in 1948, following in the footsteps of established broadcast networks CBS and NBC. In the mid-1950s, ABC merged with United Paramount Theatres, a chain of movie theaters that formerly operated as a subsidiary of Paramount Pictures. Leonard Goldenson, who had been the head of UPT, made the new television network profitable by helping develop and greenlight many successful series. In the 1980s, after purchasing an 80% interest in cable sports channel ESPN, the network's corporate parent, American Broadcasting Companies, Inc., merged with Capital Cities Communications, owner of several print publications, and television and radio stations. In 1996, most of Capital Cities/ABC's assets were purchased by The Walt Disney Company.",
'Americans Battling Communism\nAmericans Battling Communism, Inc. (ABC) was an anti-communist organization created following an October 1947 speech by Pennsylvania Judge Blair Gunther that called for an "ABC movement" to educate America about communism. Chartered in November 1947 by Harry Alan Sherman, a local lawyer active in various anti-communist organizations, the group took part in such activities as blacklisting by disclosing the names of people suspected of being communists. Its members included local judges and lawyers active in the McCarthy-era prosecution of communists.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 896]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `sts-dev-896` and `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts-dev-896 | sts-dev-768 |
|:--------------------|:------------|:------------|
| pearson_cosine | 0.7619 | 0.7599 |
| **spearman_cosine** | **0.7686** | **0.7672** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,077,240 training samples
* Columns: <code>query</code>, <code>response</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | response | negative |
|:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.76 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 141.88 tokens</li><li>max: 532 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 134.02 tokens</li><li>max: 472 tokens</li></ul> |
* Samples:
| query | response | negative |
|:--------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Was there a year 0?</code> | <code>Year zero<br>Year zero does not exist in the anno Domini system usually used to number years in the Gregorian calendar and in its predecessor, the Julian calendar. In this system, the year 1 BC is followed by AD 1. However, there is a year zero in astronomical year numbering (where it coincides with the Julian year 1 BC) and in ISO 8601:2004 (where it coincides with the Gregorian year 1 BC) as well as in all Buddhist and Hindu calendars.</code> | <code>504<br>Year 504 (DIV) was a leap year starting on Thursday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Nicomachus without colleague (or, less frequently, year 1257 "Ab urbe condita"). The denomination 504 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.</code> |
| <code>When is the dialectical method used?</code> | <code>Dialectic<br>Dialectic or dialectics (Greek: διαλεκτική, dialektikḗ; related to dialogue), also known as the dialectical method, is at base a discourse between two or more people holding different points of view about a subject but wishing to establish the truth through reasoned arguments. Dialectic resembles debate, but the concept excludes subjective elements such as emotional appeal and the modern pejorative sense of rhetoric.[1][2] Dialectic may be contrasted with the didactic method, wherein one side of the conversation teaches the other. Dialectic is alternatively known as minor logic, as opposed to major logic or critique.</code> | <code>Derek Bentley case<br>Another factor in the posthumous defence was that a "confession" recorded by Bentley, which was claimed by the prosecution to be a "verbatim record of dictated monologue", was shown by forensic linguistics methods to have been largely edited by policemen. Linguist Malcolm Coulthard showed that certain patterns, such as the frequency of the word "then" and the grammatical use of "then" after the grammatical subject ("I then" rather than "then I"), were not consistent with Bentley's use of language (his idiolect), as evidenced in court testimony. These patterns fit better the recorded testimony of the policemen involved. This is one of the earliest uses of forensic linguistics on record.</code> |
| <code>What do Grasshoppers eat?</code> | <code>Grasshopper<br>Grasshoppers are plant-eaters, with a few species at times becoming serious pests of cereals, vegetables and pasture, especially when they swarm in their millions as locusts and destroy crops over wide areas. They protect themselves from predators by camouflage; when detected, many species attempt to startle the predator with a brilliantly-coloured wing-flash while jumping and (if adult) launching themselves into the air, usually flying for only a short distance. Other species such as the rainbow grasshopper have warning coloration which deters predators. Grasshoppers are affected by parasites and various diseases, and many predatory creatures feed on both nymphs and adults. The eggs are the subject of attack by parasitoids and predators.</code> | <code>Groundhog<br>Very often the dens of groundhogs provide homes for other animals including skunks, red foxes, and cottontail rabbits. The fox and skunk feed upon field mice, grasshoppers, beetles and other creatures that destroy farm crops. In aiding these animals, the groundhog indirectly helps the farmer. In addition to providing homes for itself and other animals, the groundhog aids in soil improvement by bringing subsoil to the surface. The groundhog is also a valuable game animal and is considered a difficult sport when hunted in a fair manner. In some parts of Appalachia, they are eaten.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 12
- `per_device_eval_batch_size`: 12
- `gradient_accumulation_steps`: 4
- `num_train_epochs`: 1
- `warmup_ratio`: 0.3
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 12
- `per_device_eval_batch_size`: 12
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.3
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | sts-dev-896_spearman_cosine | sts-dev-768_spearman_cosine |
|:------:|:----:|:-------------:|:---------------------------:|:---------------------------:|
| 0.0004 | 10 | 2.2049 | - | - |
| 0.0009 | 20 | 2.3168 | - | - |
| 0.0013 | 30 | 2.3544 | - | - |
| 0.0018 | 40 | 2.2519 | - | - |
| 0.0022 | 50 | 2.1809 | - | - |
| 0.0027 | 60 | 2.1572 | - | - |
| 0.0031 | 70 | 2.1855 | - | - |
| 0.0036 | 80 | 2.5887 | - | - |
| 0.0040 | 90 | 2.883 | - | - |
| 0.0045 | 100 | 2.8557 | - | - |
| 0.0049 | 110 | 2.9356 | - | - |
| 0.0053 | 120 | 2.8833 | - | - |
| 0.0058 | 130 | 2.8394 | - | - |
| 0.0062 | 140 | 2.923 | - | - |
| 0.0067 | 150 | 2.8191 | - | - |
| 0.0071 | 160 | 2.8658 | - | - |
| 0.0076 | 170 | 2.8252 | - | - |
| 0.0080 | 180 | 2.8312 | - | - |
| 0.0085 | 190 | 2.7761 | - | - |
| 0.0089 | 200 | 2.7193 | - | - |
| 0.0094 | 210 | 2.724 | - | - |
| 0.0098 | 220 | 2.7484 | - | - |
| 0.0102 | 230 | 2.7262 | - | - |
| 0.0107 | 240 | 2.6964 | - | - |
| 0.0111 | 250 | 2.6676 | - | - |
| 0.0116 | 260 | 2.6715 | - | - |
| 0.0120 | 270 | 2.6145 | - | - |
| 0.0125 | 280 | 2.6191 | - | - |
| 0.0129 | 290 | 1.9812 | - | - |
| 0.0134 | 300 | 1.6413 | - | - |
| 0.0138 | 310 | 1.6126 | - | - |
| 0.0143 | 320 | 1.3599 | - | - |
| 0.0147 | 330 | 1.2996 | - | - |
| 0.0151 | 340 | 1.2654 | - | - |
| 0.0156 | 350 | 1.9409 | - | - |
| 0.0160 | 360 | 2.1287 | - | - |
| 0.0165 | 370 | 1.8442 | - | - |
| 0.0169 | 380 | 1.6837 | - | - |
| 0.0174 | 390 | 1.5489 | - | - |
| 0.0178 | 400 | 1.4382 | - | - |
| 0.0183 | 410 | 1.4848 | - | - |
| 0.0187 | 420 | 1.3481 | - | - |
| 0.0192 | 430 | 1.3467 | - | - |
| 0.0196 | 440 | 1.3977 | - | - |
| 0.0201 | 450 | 1.26 | - | - |
| 0.0205 | 460 | 1.2412 | - | - |
| 0.0209 | 470 | 1.316 | - | - |
| 0.0214 | 480 | 1.3501 | - | - |
| 0.0218 | 490 | 1.2246 | - | - |
| 0.0223 | 500 | 1.2271 | - | - |
| 0.0227 | 510 | 1.1871 | - | - |
| 0.0232 | 520 | 1.1685 | - | - |
| 0.0236 | 530 | 1.1624 | - | - |
| 0.0241 | 540 | 1.1911 | - | - |
| 0.0245 | 550 | 1.1978 | - | - |
| 0.0250 | 560 | 1.1228 | - | - |
| 0.0254 | 570 | 1.1091 | - | - |
| 0.0258 | 580 | 1.1433 | - | - |
| 0.0263 | 590 | 1.0638 | - | - |
| 0.0267 | 600 | 1.0515 | - | - |
| 0.0272 | 610 | 1.175 | - | - |
| 0.0276 | 620 | 1.0943 | - | - |
| 0.0281 | 630 | 1.1226 | - | - |
| 0.0285 | 640 | 0.9871 | - | - |
| 0.0290 | 650 | 1.0171 | - | - |
| 0.0294 | 660 | 1.0169 | - | - |
| 0.0299 | 670 | 0.9643 | - | - |
| 0.0303 | 680 | 0.9563 | - | - |
| 0.0307 | 690 | 0.9841 | - | - |
| 0.0312 | 700 | 1.0349 | - | - |
| 0.0316 | 710 | 0.8958 | - | - |
| 0.0321 | 720 | 0.9225 | - | - |
| 0.0325 | 730 | 0.842 | - | - |
| 0.0330 | 740 | 0.9104 | - | - |
| 0.0334 | 750 | 0.8927 | - | - |
| 0.0339 | 760 | 0.8508 | - | - |
| 0.0343 | 770 | 0.8835 | - | - |
| 0.0348 | 780 | 0.9531 | - | - |
| 0.0352 | 790 | 0.926 | - | - |
| 0.0356 | 800 | 0.8718 | - | - |
| 0.0361 | 810 | 0.8261 | - | - |
| 0.0365 | 820 | 0.8169 | - | - |
| 0.0370 | 830 | 0.8525 | - | - |
| 0.0374 | 840 | 0.8504 | - | - |
| 0.0379 | 850 | 0.7625 | - | - |
| 0.0383 | 860 | 0.8259 | - | - |
| 0.0388 | 870 | 0.7558 | - | - |
| 0.0392 | 880 | 0.7898 | - | - |
| 0.0397 | 890 | 0.7694 | - | - |
| 0.0401 | 900 | 0.7429 | - | - |
| 0.0405 | 910 | 0.6666 | - | - |
| 0.0410 | 920 | 0.7407 | - | - |
| 0.0414 | 930 | 0.6665 | - | - |
| 0.0419 | 940 | 0.7597 | - | - |
| 0.0423 | 950 | 0.7035 | - | - |
| 0.0428 | 960 | 0.7166 | - | - |
| 0.0432 | 970 | 0.6889 | - | - |
| 0.0437 | 980 | 0.7541 | - | - |
| 0.0441 | 990 | 0.7175 | - | - |
| 0.0446 | 1000 | 0.7389 | 0.6420 | 0.6403 |
| 0.0450 | 1010 | 0.7142 | - | - |
| 0.0454 | 1020 | 0.7301 | - | - |
| 0.0459 | 1030 | 0.7299 | - | - |
| 0.0463 | 1040 | 0.6759 | - | - |
| 0.0468 | 1050 | 0.7036 | - | - |
| 0.0472 | 1060 | 0.6286 | - | - |
| 0.0477 | 1070 | 0.595 | - | - |
| 0.0481 | 1080 | 0.6099 | - | - |
| 0.0486 | 1090 | 0.6377 | - | - |
| 0.0490 | 1100 | 0.6309 | - | - |
| 0.0495 | 1110 | 0.6306 | - | - |
| 0.0499 | 1120 | 0.557 | - | - |
| 0.0504 | 1130 | 0.5898 | - | - |
| 0.0508 | 1140 | 0.5896 | - | - |
| 0.0512 | 1150 | 0.6399 | - | - |
| 0.0517 | 1160 | 0.5923 | - | - |
| 0.0521 | 1170 | 0.5787 | - | - |
| 0.0526 | 1180 | 0.591 | - | - |
| 0.0530 | 1190 | 0.5714 | - | - |
| 0.0535 | 1200 | 0.6047 | - | - |
| 0.0539 | 1210 | 0.5904 | - | - |
| 0.0544 | 1220 | 0.543 | - | - |
| 0.0548 | 1230 | 0.6033 | - | - |
| 0.0553 | 1240 | 0.5445 | - | - |
| 0.0557 | 1250 | 0.5217 | - | - |
| 0.0561 | 1260 | 0.5835 | - | - |
| 0.0566 | 1270 | 0.5353 | - | - |
| 0.0570 | 1280 | 0.5887 | - | - |
| 0.0575 | 1290 | 0.5967 | - | - |
| 0.0579 | 1300 | 0.5036 | - | - |
| 0.0584 | 1310 | 0.5915 | - | - |
| 0.0588 | 1320 | 0.5719 | - | - |
| 0.0593 | 1330 | 0.5238 | - | - |
| 0.0597 | 1340 | 0.5647 | - | - |
| 0.0602 | 1350 | 0.538 | - | - |
| 0.0606 | 1360 | 0.5457 | - | - |
| 0.0610 | 1370 | 0.5169 | - | - |
| 0.0615 | 1380 | 0.4967 | - | - |
| 0.0619 | 1390 | 0.4864 | - | - |
| 0.0624 | 1400 | 0.5133 | - | - |
| 0.0628 | 1410 | 0.5587 | - | - |
| 0.0633 | 1420 | 0.4691 | - | - |
| 0.0637 | 1430 | 0.5186 | - | - |
| 0.0642 | 1440 | 0.4907 | - | - |
| 0.0646 | 1450 | 0.5281 | - | - |
| 0.0651 | 1460 | 0.4741 | - | - |
| 0.0655 | 1470 | 0.4452 | - | - |
| 0.0659 | 1480 | 0.4771 | - | - |
| 0.0664 | 1490 | 0.4289 | - | - |
| 0.0668 | 1500 | 0.4551 | - | - |
| 0.0673 | 1510 | 0.4558 | - | - |
| 0.0677 | 1520 | 0.5159 | - | - |
| 0.0682 | 1530 | 0.4296 | - | - |
| 0.0686 | 1540 | 0.4548 | - | - |
| 0.0691 | 1550 | 0.4439 | - | - |
| 0.0695 | 1560 | 0.4295 | - | - |
| 0.0700 | 1570 | 0.4466 | - | - |
| 0.0704 | 1580 | 0.4717 | - | - |
| 0.0708 | 1590 | 0.492 | - | - |
| 0.0713 | 1600 | 0.4566 | - | - |
| 0.0717 | 1610 | 0.4451 | - | - |
| 0.0722 | 1620 | 0.4715 | - | - |
| 0.0726 | 1630 | 0.4573 | - | - |
| 0.0731 | 1640 | 0.3972 | - | - |
| 0.0735 | 1650 | 0.5212 | - | - |
| 0.0740 | 1660 | 0.4381 | - | - |
| 0.0744 | 1670 | 0.4552 | - | - |
| 0.0749 | 1680 | 0.4767 | - | - |
| 0.0753 | 1690 | 0.4398 | - | - |
| 0.0757 | 1700 | 0.4801 | - | - |
| 0.0762 | 1710 | 0.3751 | - | - |
| 0.0766 | 1720 | 0.4407 | - | - |
| 0.0771 | 1730 | 0.4305 | - | - |
| 0.0775 | 1740 | 0.3938 | - | - |
| 0.0780 | 1750 | 0.4748 | - | - |
| 0.0784 | 1760 | 0.428 | - | - |
| 0.0789 | 1770 | 0.404 | - | - |
| 0.0793 | 1780 | 0.4261 | - | - |
| 0.0798 | 1790 | 0.359 | - | - |
| 0.0802 | 1800 | 0.4422 | - | - |
| 0.0807 | 1810 | 0.4748 | - | - |
| 0.0811 | 1820 | 0.4352 | - | - |
| 0.0815 | 1830 | 0.4032 | - | - |
| 0.0820 | 1840 | 0.4124 | - | - |
| 0.0824 | 1850 | 0.4486 | - | - |
| 0.0829 | 1860 | 0.429 | - | - |
| 0.0833 | 1870 | 0.4189 | - | - |
| 0.0838 | 1880 | 0.3658 | - | - |
| 0.0842 | 1890 | 0.4297 | - | - |
| 0.0847 | 1900 | 0.4215 | - | - |
| 0.0851 | 1910 | 0.3726 | - | - |
| 0.0856 | 1920 | 0.3736 | - | - |
| 0.0860 | 1930 | 0.4287 | - | - |
| 0.0864 | 1940 | 0.4402 | - | - |
| 0.0869 | 1950 | 0.4353 | - | - |
| 0.0873 | 1960 | 0.3622 | - | - |
| 0.0878 | 1970 | 0.3557 | - | - |
| 0.0882 | 1980 | 0.4107 | - | - |
| 0.0887 | 1990 | 0.3982 | - | - |
| 0.0891 | 2000 | 0.453 | 0.7292 | 0.7261 |
| 0.0896 | 2010 | 0.3971 | - | - |
| 0.0900 | 2020 | 0.4374 | - | - |
| 0.0905 | 2030 | 0.4322 | - | - |
| 0.0909 | 2040 | 0.3945 | - | - |
| 0.0913 | 2050 | 0.356 | - | - |
| 0.0918 | 2060 | 0.4182 | - | - |
| 0.0922 | 2070 | 0.3694 | - | - |
| 0.0927 | 2080 | 0.3989 | - | - |
| 0.0931 | 2090 | 0.4237 | - | - |
| 0.0936 | 2100 | 0.3961 | - | - |
| 0.0940 | 2110 | 0.4264 | - | - |
| 0.0945 | 2120 | 0.3609 | - | - |
| 0.0949 | 2130 | 0.4154 | - | - |
| 0.0954 | 2140 | 0.3661 | - | - |
| 0.0958 | 2150 | 0.3328 | - | - |
| 0.0962 | 2160 | 0.3456 | - | - |
| 0.0967 | 2170 | 0.3478 | - | - |
| 0.0971 | 2180 | 0.3339 | - | - |
| 0.0976 | 2190 | 0.3833 | - | - |
| 0.0980 | 2200 | 0.3238 | - | - |
| 0.0985 | 2210 | 0.3871 | - | - |
| 0.0989 | 2220 | 0.4009 | - | - |
| 0.0994 | 2230 | 0.4115 | - | - |
| 0.0998 | 2240 | 0.4024 | - | - |
| 0.1003 | 2250 | 0.35 | - | - |
| 0.1007 | 2260 | 0.3649 | - | - |
| 0.1011 | 2270 | 0.3615 | - | - |
| 0.1016 | 2280 | 0.3898 | - | - |
| 0.1020 | 2290 | 0.3866 | - | - |
| 0.1025 | 2300 | 0.3904 | - | - |
| 0.1029 | 2310 | 0.3321 | - | - |
| 0.1034 | 2320 | 0.3803 | - | - |
| 0.1038 | 2330 | 0.3831 | - | - |
| 0.1043 | 2340 | 0.403 | - | - |
| 0.1047 | 2350 | 0.3803 | - | - |
| 0.1052 | 2360 | 0.3463 | - | - |
| 0.1056 | 2370 | 0.3987 | - | - |
| 0.1060 | 2380 | 0.3731 | - | - |
| 0.1065 | 2390 | 0.353 | - | - |
| 0.1069 | 2400 | 0.3166 | - | - |
| 0.1074 | 2410 | 0.3895 | - | - |
| 0.1078 | 2420 | 0.4025 | - | - |
| 0.1083 | 2430 | 0.3798 | - | - |
| 0.1087 | 2440 | 0.2991 | - | - |
| 0.1092 | 2450 | 0.3094 | - | - |
| 0.1096 | 2460 | 0.3669 | - | - |
| 0.1101 | 2470 | 0.3412 | - | - |
| 0.1105 | 2480 | 0.3697 | - | - |
| 0.1110 | 2490 | 0.369 | - | - |
| 0.1114 | 2500 | 0.3393 | - | - |
| 0.1118 | 2510 | 0.4232 | - | - |
| 0.1123 | 2520 | 0.3445 | - | - |
| 0.1127 | 2530 | 0.4165 | - | - |
| 0.1132 | 2540 | 0.3721 | - | - |
| 0.1136 | 2550 | 0.3476 | - | - |
| 0.1141 | 2560 | 0.2847 | - | - |
| 0.1145 | 2570 | 0.3609 | - | - |
| 0.1150 | 2580 | 0.3017 | - | - |
| 0.1154 | 2590 | 0.374 | - | - |
| 0.1159 | 2600 | 0.3365 | - | - |
| 0.1163 | 2610 | 0.393 | - | - |
| 0.1167 | 2620 | 0.3623 | - | - |
| 0.1172 | 2630 | 0.3538 | - | - |
| 0.1176 | 2640 | 0.3206 | - | - |
| 0.1181 | 2650 | 0.3962 | - | - |
| 0.1185 | 2660 | 0.3087 | - | - |
| 0.1190 | 2670 | 0.3482 | - | - |
| 0.1194 | 2680 | 0.3616 | - | - |
| 0.1199 | 2690 | 0.3955 | - | - |
| 0.1203 | 2700 | 0.3915 | - | - |
| 0.1208 | 2710 | 0.3782 | - | - |
| 0.1212 | 2720 | 0.3576 | - | - |
| 0.1216 | 2730 | 0.3544 | - | - |
| 0.1221 | 2740 | 0.3572 | - | - |
| 0.1225 | 2750 | 0.3107 | - | - |
| 0.1230 | 2760 | 0.3579 | - | - |
| 0.1234 | 2770 | 0.3571 | - | - |
| 0.1239 | 2780 | 0.3694 | - | - |
| 0.1243 | 2790 | 0.3674 | - | - |
| 0.1248 | 2800 | 0.3373 | - | - |
| 0.1252 | 2810 | 0.3362 | - | - |
| 0.1257 | 2820 | 0.3225 | - | - |
| 0.1261 | 2830 | 0.3609 | - | - |
| 0.1265 | 2840 | 0.3681 | - | - |
| 0.1270 | 2850 | 0.4059 | - | - |
| 0.1274 | 2860 | 0.3047 | - | - |
| 0.1279 | 2870 | 0.3446 | - | - |
| 0.1283 | 2880 | 0.3507 | - | - |
| 0.1288 | 2890 | 0.3124 | - | - |
| 0.1292 | 2900 | 0.3712 | - | - |
| 0.1297 | 2910 | 0.3394 | - | - |
| 0.1301 | 2920 | 0.3869 | - | - |
| 0.1306 | 2930 | 0.3449 | - | - |
| 0.1310 | 2940 | 0.3752 | - | - |
| 0.1314 | 2950 | 0.3341 | - | - |
| 0.1319 | 2960 | 0.3329 | - | - |
| 0.1323 | 2970 | 0.36 | - | - |
| 0.1328 | 2980 | 0.3788 | - | - |
| 0.1332 | 2990 | 0.3834 | - | - |
| 0.1337 | 3000 | 0.3426 | 0.7603 | 0.7590 |
| 0.1341 | 3010 | 0.3591 | - | - |
| 0.1346 | 3020 | 0.2923 | - | - |
| 0.1350 | 3030 | 0.332 | - | - |
| 0.1355 | 3040 | 0.3867 | - | - |
| 0.1359 | 3050 | 0.3778 | - | - |
| 0.1363 | 3060 | 0.3389 | - | - |
| 0.1368 | 3070 | 0.3069 | - | - |
| 0.1372 | 3080 | 0.3833 | - | - |
| 0.1377 | 3090 | 0.3497 | - | - |
| 0.1381 | 3100 | 0.3698 | - | - |
| 0.1386 | 3110 | 0.335 | - | - |
| 0.1390 | 3120 | 0.3578 | - | - |
| 0.1395 | 3130 | 0.3171 | - | - |
| 0.1399 | 3140 | 0.3073 | - | - |
| 0.1404 | 3150 | 0.3354 | - | - |
| 0.1408 | 3160 | 0.3338 | - | - |
| 0.1412 | 3170 | 0.367 | - | - |
| 0.1417 | 3180 | 0.3299 | - | - |
| 0.1421 | 3190 | 0.3622 | - | - |
| 0.1426 | 3200 | 0.3158 | - | - |
| 0.1430 | 3210 | 0.3242 | - | - |
| 0.1435 | 3220 | 0.388 | - | - |
| 0.1439 | 3230 | 0.3626 | - | - |
| 0.1444 | 3240 | 0.3371 | - | - |
| 0.1448 | 3250 | 0.3808 | - | - |
| 0.1453 | 3260 | 0.3375 | - | - |
| 0.1457 | 3270 | 0.352 | - | - |
| 0.1462 | 3280 | 0.3466 | - | - |
| 0.1466 | 3290 | 0.3355 | - | - |
| 0.1470 | 3300 | 0.3432 | - | - |
| 0.1475 | 3310 | 0.372 | - | - |
| 0.1479 | 3320 | 0.3501 | - | - |
| 0.1484 | 3330 | 0.3311 | - | - |
| 0.1488 | 3340 | 0.3312 | - | - |
| 0.1493 | 3350 | 0.3276 | - | - |
| 0.1497 | 3360 | 0.3218 | - | - |
| 0.1502 | 3370 | 0.4019 | - | - |
| 0.1506 | 3380 | 0.3132 | - | - |
| 0.1511 | 3390 | 0.3741 | - | - |
| 0.1515 | 3400 | 0.3359 | - | - |
| 0.1519 | 3410 | 0.381 | - | - |
| 0.1524 | 3420 | 0.3024 | - | - |
| 0.1528 | 3430 | 0.3238 | - | - |
| 0.1533 | 3440 | 0.2675 | - | - |
| 0.1537 | 3450 | 0.3568 | - | - |
| 0.1542 | 3460 | 0.3666 | - | - |
| 0.1546 | 3470 | 0.3307 | - | - |
| 0.1551 | 3480 | 0.3698 | - | - |
| 0.1555 | 3490 | 0.3668 | - | - |
| 0.1560 | 3500 | 0.385 | - | - |
| 0.1564 | 3510 | 0.3068 | - | - |
| 0.1568 | 3520 | 0.3015 | - | - |
| 0.1573 | 3530 | 0.3604 | - | - |
| 0.1577 | 3540 | 0.3592 | - | - |
| 0.1582 | 3550 | 0.3483 | - | - |
| 0.1586 | 3560 | 0.3131 | - | - |
| 0.1591 | 3570 | 0.3738 | - | - |
| 0.1595 | 3580 | 0.3719 | - | - |
| 0.1600 | 3590 | 0.3409 | - | - |
| 0.1604 | 3600 | 0.4082 | - | - |
| 0.1609 | 3610 | 0.2881 | - | - |
| 0.1613 | 3620 | 0.3214 | - | - |
| 0.1617 | 3630 | 0.4413 | - | - |
| 0.1622 | 3640 | 0.3706 | - | - |
| 0.1626 | 3650 | 0.3643 | - | - |
| 0.1631 | 3660 | 0.3493 | - | - |
| 0.1635 | 3670 | 0.3877 | - | - |
| 0.1640 | 3680 | 0.3278 | - | - |
| 0.1644 | 3690 | 0.3211 | - | - |
| 0.1649 | 3700 | 0.4104 | - | - |
| 0.1653 | 3710 | 0.4558 | - | - |
| 0.1658 | 3720 | 0.3602 | - | - |
| 0.1662 | 3730 | 0.3348 | - | - |
| 0.1666 | 3740 | 0.2922 | - | - |
| 0.1671 | 3750 | 0.329 | - | - |
| 0.1675 | 3760 | 0.3507 | - | - |
| 0.1680 | 3770 | 0.2853 | - | - |
| 0.1684 | 3780 | 0.3556 | - | - |
| 0.1689 | 3790 | 0.3138 | - | - |
| 0.1693 | 3800 | 0.3536 | - | - |
| 0.1698 | 3810 | 0.3762 | - | - |
| 0.1702 | 3820 | 0.3262 | - | - |
| 0.1707 | 3830 | 0.3571 | - | - |
| 0.1711 | 3840 | 0.3455 | - | - |
| 0.1715 | 3850 | 0.3283 | - | - |
| 0.1720 | 3860 | 0.3317 | - | - |
| 0.1724 | 3870 | 0.2984 | - | - |
| 0.1729 | 3880 | 0.2659 | - | - |
| 0.1733 | 3890 | 0.2844 | - | - |
| 0.1738 | 3900 | 0.2999 | - | - |
| 0.1742 | 3910 | 0.2991 | - | - |
| 0.1747 | 3920 | 0.2667 | - | - |
| 0.1751 | 3930 | 0.3529 | - | - |
| 0.1756 | 3940 | 0.3767 | - | - |
| 0.1760 | 3950 | 0.3909 | - | - |
| 0.1765 | 3960 | 0.3393 | - | - |
| 0.1769 | 3970 | 0.2918 | - | - |
| 0.1773 | 3980 | 0.3363 | - | - |
| 0.1778 | 3990 | 0.3694 | - | - |
| 0.1782 | 4000 | 0.3 | 0.7572 | 0.7542 |
| 0.1787 | 4010 | 0.3266 | - | - |
| 0.1791 | 4020 | 0.3059 | - | - |
| 0.1796 | 4030 | 0.3038 | - | - |
| 0.1800 | 4040 | 0.3415 | - | - |
| 0.1805 | 4050 | 0.3385 | - | - |
| 0.1809 | 4060 | 0.3145 | - | - |
| 0.1814 | 4070 | 0.2816 | - | - |
| 0.1818 | 4080 | 0.3272 | - | - |
| 0.1822 | 4090 | 0.3335 | - | - |
| 0.1827 | 4100 | 0.3412 | - | - |
| 0.1831 | 4110 | 0.3367 | - | - |
| 0.1836 | 4120 | 0.2754 | - | - |
| 0.1840 | 4130 | 0.298 | - | - |
| 0.1845 | 4140 | 0.3252 | - | - |
| 0.1849 | 4150 | 0.3613 | - | - |
| 0.1854 | 4160 | 0.3197 | - | - |
| 0.1858 | 4170 | 0.3578 | - | - |
| 0.1863 | 4180 | 0.3254 | - | - |
| 0.1867 | 4190 | 0.2993 | - | - |
| 0.1871 | 4200 | 0.3188 | - | - |
| 0.1876 | 4210 | 0.3217 | - | - |
| 0.1880 | 4220 | 0.2893 | - | - |
| 0.1885 | 4230 | 0.3223 | - | - |
| 0.1889 | 4240 | 0.3522 | - | - |
| 0.1894 | 4250 | 0.3489 | - | - |
| 0.1898 | 4260 | 0.3313 | - | - |
| 0.1903 | 4270 | 0.3612 | - | - |
| 0.1907 | 4280 | 0.3323 | - | - |
| 0.1912 | 4290 | 0.2971 | - | - |
| 0.1916 | 4300 | 0.3009 | - | - |
| 0.1920 | 4310 | 0.3336 | - | - |
| 0.1925 | 4320 | 0.3655 | - | - |
| 0.1929 | 4330 | 0.3414 | - | - |
| 0.1934 | 4340 | 0.2903 | - | - |
| 0.1938 | 4350 | 0.3732 | - | - |
| 0.1943 | 4360 | 0.3526 | - | - |
| 0.1947 | 4370 | 0.3424 | - | - |
| 0.1952 | 4380 | 0.3371 | - | - |
| 0.1956 | 4390 | 0.3407 | - | - |
| 0.1961 | 4400 | 0.3626 | - | - |
| 0.1965 | 4410 | 0.3104 | - | - |
| 0.1969 | 4420 | 0.3432 | - | - |
| 0.1974 | 4430 | 0.2897 | - | - |
| 0.1978 | 4440 | 0.2952 | - | - |
| 0.1983 | 4450 | 0.3032 | - | - |
| 0.1987 | 4460 | 0.3179 | - | - |
| 0.1992 | 4470 | 0.3364 | - | - |
| 0.1996 | 4480 | 0.2757 | - | - |
| 0.2001 | 4490 | 0.3775 | - | - |
| 0.2005 | 4500 | 0.2782 | - | - |
| 0.2010 | 4510 | 0.2787 | - | - |
| 0.2014 | 4520 | 0.3433 | - | - |
| 0.2018 | 4530 | 0.3348 | - | - |
| 0.2023 | 4540 | 0.295 | - | - |
| 0.2027 | 4550 | 0.3076 | - | - |
| 0.2032 | 4560 | 0.3489 | - | - |
| 0.2036 | 4570 | 0.3741 | - | - |
| 0.2041 | 4580 | 0.3121 | - | - |
| 0.2045 | 4590 | 0.2682 | - | - |
| 0.2050 | 4600 | 0.3106 | - | - |
| 0.2054 | 4610 | 0.312 | - | - |
| 0.2059 | 4620 | 0.3537 | - | - |
| 0.2063 | 4630 | 0.2801 | - | - |
| 0.2068 | 4640 | 0.3378 | - | - |
| 0.2072 | 4650 | 0.3417 | - | - |
| 0.2076 | 4660 | 0.4114 | - | - |
| 0.2081 | 4670 | 0.3325 | - | - |
| 0.2085 | 4680 | 0.3085 | - | - |
| 0.2090 | 4690 | 0.2875 | - | - |
| 0.2094 | 4700 | 0.3864 | - | - |
| 0.2099 | 4710 | 0.3235 | - | - |
| 0.2103 | 4720 | 0.3187 | - | - |
| 0.2108 | 4730 | 0.2956 | - | - |
| 0.2112 | 4740 | 0.3405 | - | - |
| 0.2117 | 4750 | 0.313 | - | - |
| 0.2121 | 4760 | 0.2865 | - | - |
| 0.2125 | 4770 | 0.3555 | - | - |
| 0.2130 | 4780 | 0.3089 | - | - |
| 0.2134 | 4790 | 0.3021 | - | - |
| 0.2139 | 4800 | 0.353 | - | - |
| 0.2143 | 4810 | 0.3356 | - | - |
| 0.2148 | 4820 | 0.338 | - | - |
| 0.2152 | 4830 | 0.3362 | - | - |
| 0.2157 | 4840 | 0.3152 | - | - |
| 0.2161 | 4850 | 0.3321 | - | - |
| 0.2166 | 4860 | 0.3087 | - | - |
| 0.2170 | 4870 | 0.3503 | - | - |
| 0.2174 | 4880 | 0.3841 | - | - |
| 0.2179 | 4890 | 0.333 | - | - |
| 0.2183 | 4900 | 0.3705 | - | - |
| 0.2188 | 4910 | 0.3121 | - | - |
| 0.2192 | 4920 | 0.3151 | - | - |
| 0.2197 | 4930 | 0.3138 | - | - |
| 0.2201 | 4940 | 0.3525 | - | - |
| 0.2206 | 4950 | 0.3233 | - | - |
| 0.2210 | 4960 | 0.2762 | - | - |
| 0.2215 | 4970 | 0.3679 | - | - |
| 0.2219 | 4980 | 0.3351 | - | - |
| 0.2223 | 4990 | 0.3733 | - | - |
| 0.2228 | 5000 | 0.366 | 0.7601 | 0.7577 |
| 0.2232 | 5010 | 0.2968 | - | - |
| 0.2237 | 5020 | 0.3618 | - | - |
| 0.2241 | 5030 | 0.3758 | - | - |
| 0.2246 | 5040 | 0.2664 | - | - |
| 0.2250 | 5050 | 0.3232 | - | - |
| 0.2255 | 5060 | 0.3452 | - | - |
| 0.2259 | 5070 | 0.4011 | - | - |
| 0.2264 | 5080 | 0.3521 | - | - |
| 0.2268 | 5090 | 0.3029 | - | - |
| 0.2272 | 5100 | 0.3058 | - | - |
| 0.2277 | 5110 | 0.3198 | - | - |
| 0.2281 | 5120 | 0.2958 | - | - |
| 0.2286 | 5130 | 0.3046 | - | - |
| 0.2290 | 5140 | 0.3284 | - | - |
| 0.2295 | 5150 | 0.333 | - | - |
| 0.2299 | 5160 | 0.3385 | - | - |
| 0.2304 | 5170 | 0.3359 | - | - |
| 0.2308 | 5180 | 0.3572 | - | - |
| 0.2313 | 5190 | 0.2992 | - | - |
| 0.2317 | 5200 | 0.318 | - | - |
| 0.2321 | 5210 | 0.3002 | - | - |
| 0.2326 | 5220 | 0.3194 | - | - |
| 0.2330 | 5230 | 0.3398 | - | - |
| 0.2335 | 5240 | 0.2675 | - | - |
| 0.2339 | 5250 | 0.312 | - | - |
| 0.2344 | 5260 | 0.3199 | - | - |
| 0.2348 | 5270 | 0.3446 | - | - |
| 0.2353 | 5280 | 0.3082 | - | - |
| 0.2357 | 5290 | 0.3522 | - | - |
| 0.2362 | 5300 | 0.3347 | - | - |
| 0.2366 | 5310 | 0.3571 | - | - |
| 0.2371 | 5320 | 0.3275 | - | - |
| 0.2375 | 5330 | 0.3524 | - | - |
| 0.2379 | 5340 | 0.3151 | - | - |
| 0.2384 | 5350 | 0.3338 | - | - |
| 0.2388 | 5360 | 0.3794 | - | - |
| 0.2393 | 5370 | 0.3591 | - | - |
| 0.2397 | 5380 | 0.3442 | - | - |
| 0.2402 | 5390 | 0.2927 | - | - |
| 0.2406 | 5400 | 0.3316 | - | - |
| 0.2411 | 5410 | 0.3152 | - | - |
| 0.2415 | 5420 | 0.3876 | - | - |
| 0.2420 | 5430 | 0.324 | - | - |
| 0.2424 | 5440 | 0.3296 | - | - |
| 0.2428 | 5450 | 0.3499 | - | - |
| 0.2433 | 5460 | 0.3552 | - | - |
| 0.2437 | 5470 | 0.3394 | - | - |
| 0.2442 | 5480 | 0.3083 | - | - |
| 0.2446 | 5490 | 0.3198 | - | - |
| 0.2451 | 5500 | 0.2887 | - | - |
| 0.2455 | 5510 | 0.2898 | - | - |
| 0.2460 | 5520 | 0.3092 | - | - |
| 0.2464 | 5530 | 0.3025 | - | - |
| 0.2469 | 5540 | 0.3253 | - | - |
| 0.2473 | 5550 | 0.3686 | - | - |
| 0.2477 | 5560 | 0.3205 | - | - |
| 0.2482 | 5570 | 0.3507 | - | - |
| 0.2486 | 5580 | 0.2809 | - | - |
| 0.2491 | 5590 | 0.3339 | - | - |
| 0.2495 | 5600 | 0.3261 | - | - |
| 0.2500 | 5610 | 0.2804 | - | - |
| 0.2504 | 5620 | 0.2856 | - | - |
| 0.2509 | 5630 | 0.3211 | - | - |
| 0.2513 | 5640 | 0.3126 | - | - |
| 0.2518 | 5650 | 0.3374 | - | - |
| 0.2522 | 5660 | 0.2957 | - | - |
| 0.2526 | 5670 | 0.3414 | - | - |
| 0.2531 | 5680 | 0.3219 | - | - |
| 0.2535 | 5690 | 0.3554 | - | - |
| 0.2540 | 5700 | 0.2738 | - | - |
| 0.2544 | 5710 | 0.361 | - | - |
| 0.2549 | 5720 | 0.336 | - | - |
| 0.2553 | 5730 | 0.3254 | - | - |
| 0.2558 | 5740 | 0.3453 | - | - |
| 0.2562 | 5750 | 0.2984 | - | - |
| 0.2567 | 5760 | 0.3224 | - | - |
| 0.2571 | 5770 | 0.2553 | - | - |
| 0.2575 | 5780 | 0.301 | - | - |
| 0.2580 | 5790 | 0.3767 | - | - |
| 0.2584 | 5800 | 0.3092 | - | - |
| 0.2589 | 5810 | 0.2676 | - | - |
| 0.2593 | 5820 | 0.3178 | - | - |
| 0.2598 | 5830 | 0.3117 | - | - |
| 0.2602 | 5840 | 0.3446 | - | - |
| 0.2607 | 5850 | 0.3347 | - | - |
| 0.2611 | 5860 | 0.3841 | - | - |
| 0.2616 | 5870 | 0.2847 | - | - |
| 0.2620 | 5880 | 0.3587 | - | - |
| 0.2624 | 5890 | 0.2812 | - | - |
| 0.2629 | 5900 | 0.3577 | - | - |
| 0.2633 | 5910 | 0.3011 | - | - |
| 0.2638 | 5920 | 0.3102 | - | - |
| 0.2642 | 5930 | 0.3297 | - | - |
| 0.2647 | 5940 | 0.2603 | - | - |
| 0.2651 | 5950 | 0.3575 | - | - |
| 0.2656 | 5960 | 0.3617 | - | - |
| 0.2660 | 5970 | 0.3587 | - | - |
| 0.2665 | 5980 | 0.3198 | - | - |
| 0.2669 | 5990 | 0.3536 | - | - |
| 0.2673 | 6000 | 0.3047 | 0.7725 | 0.7699 |
| 0.2678 | 6010 | 0.3211 | - | - |
| 0.2682 | 6020 | 0.392 | - | - |
| 0.2687 | 6030 | 0.3359 | - | - |
| 0.2691 | 6040 | 0.2903 | - | - |
| 0.2696 | 6050 | 0.286 | - | - |
| 0.2700 | 6060 | 0.3426 | - | - |
| 0.2705 | 6070 | 0.3406 | - | - |
| 0.2709 | 6080 | 0.2903 | - | - |
| 0.2714 | 6090 | 0.3175 | - | - |
| 0.2718 | 6100 | 0.2794 | - | - |
| 0.2723 | 6110 | 0.3232 | - | - |
| 0.2727 | 6120 | 0.3054 | - | - |
| 0.2731 | 6130 | 0.361 | - | - |
| 0.2736 | 6140 | 0.3524 | - | - |
| 0.2740 | 6150 | 0.3371 | - | - |
| 0.2745 | 6160 | 0.313 | - | - |
| 0.2749 | 6170 | 0.2713 | - | - |
| 0.2754 | 6180 | 0.3141 | - | - |
| 0.2758 | 6190 | 0.3197 | - | - |
| 0.2763 | 6200 | 0.2792 | - | - |
| 0.2767 | 6210 | 0.3169 | - | - |
| 0.2772 | 6220 | 0.307 | - | - |
| 0.2776 | 6230 | 0.2737 | - | - |
| 0.2780 | 6240 | 0.3348 | - | - |
| 0.2785 | 6250 | 0.2885 | - | - |
| 0.2789 | 6260 | 0.3416 | - | - |
| 0.2794 | 6270 | 0.3422 | - | - |
| 0.2798 | 6280 | 0.2758 | - | - |
| 0.2803 | 6290 | 0.3736 | - | - |
| 0.2807 | 6300 | 0.3036 | - | - |
| 0.2812 | 6310 | 0.3704 | - | - |
| 0.2816 | 6320 | 0.3312 | - | - |
| 0.2821 | 6330 | 0.3431 | - | - |
| 0.2825 | 6340 | 0.3502 | - | - |
| 0.2829 | 6350 | 0.2821 | - | - |
| 0.2834 | 6360 | 0.3097 | - | - |
| 0.2838 | 6370 | 0.3444 | - | - |
| 0.2843 | 6380 | 0.3349 | - | - |
| 0.2847 | 6390 | 0.2999 | - | - |
| 0.2852 | 6400 | 0.3149 | - | - |
| 0.2856 | 6410 | 0.3462 | - | - |
| 0.2861 | 6420 | 0.3337 | - | - |
| 0.2865 | 6430 | 0.3329 | - | - |
| 0.2870 | 6440 | 0.3294 | - | - |
| 0.2874 | 6450 | 0.2917 | - | - |
| 0.2878 | 6460 | 0.3007 | - | - |
| 0.2883 | 6470 | 0.2809 | - | - |
| 0.2887 | 6480 | 0.3745 | - | - |
| 0.2892 | 6490 | 0.3625 | - | - |
| 0.2896 | 6500 | 0.3123 | - | - |
| 0.2901 | 6510 | 0.3209 | - | - |
| 0.2905 | 6520 | 0.347 | - | - |
| 0.2910 | 6530 | 0.3084 | - | - |
| 0.2914 | 6540 | 0.2829 | - | - |
| 0.2919 | 6550 | 0.3569 | - | - |
| 0.2923 | 6560 | 0.2686 | - | - |
| 0.2927 | 6570 | 0.2929 | - | - |
| 0.2932 | 6580 | 0.3237 | - | - |
| 0.2936 | 6590 | 0.3451 | - | - |
| 0.2941 | 6600 | 0.3199 | - | - |
| 0.2945 | 6610 | 0.2848 | - | - |
| 0.2950 | 6620 | 0.2842 | - | - |
| 0.2954 | 6630 | 0.3168 | - | - |
| 0.2959 | 6640 | 0.3094 | - | - |
| 0.2963 | 6650 | 0.3239 | - | - |
| 0.2968 | 6660 | 0.357 | - | - |
| 0.2972 | 6670 | 0.3279 | - | - |
| 0.2976 | 6680 | 0.4015 | - | - |
| 0.2981 | 6690 | 0.2901 | - | - |
| 0.2985 | 6700 | 0.3387 | - | - |
| 0.2990 | 6710 | 0.3282 | - | - |
| 0.2994 | 6720 | 0.2909 | - | - |
| 0.2999 | 6730 | 0.3556 | - | - |
| 0.3003 | 6740 | 0.3008 | - | - |
| 0.3008 | 6750 | 0.3205 | - | - |
| 0.3012 | 6760 | 0.3132 | - | - |
| 0.3017 | 6770 | 0.3181 | - | - |
| 0.3021 | 6780 | 0.3752 | - | - |
| 0.3026 | 6790 | 0.317 | - | - |
| 0.3030 | 6800 | 0.3584 | - | - |
| 0.3034 | 6810 | 0.3475 | - | - |
| 0.3039 | 6820 | 0.2827 | - | - |
| 0.3043 | 6830 | 0.2925 | - | - |
| 0.3048 | 6840 | 0.2941 | - | - |
| 0.3052 | 6850 | 0.3154 | - | - |
| 0.3057 | 6860 | 0.3301 | - | - |
| 0.3061 | 6870 | 0.3492 | - | - |
| 0.3066 | 6880 | 0.3147 | - | - |
| 0.3070 | 6890 | 0.348 | - | - |
| 0.3075 | 6900 | 0.3577 | - | - |
| 0.3079 | 6910 | 0.2893 | - | - |
| 0.3083 | 6920 | 0.3298 | - | - |
| 0.3088 | 6930 | 0.3071 | - | - |
| 0.3092 | 6940 | 0.322 | - | - |
| 0.3097 | 6950 | 0.3055 | - | - |
| 0.3101 | 6960 | 0.3333 | - | - |
| 0.3106 | 6970 | 0.3329 | - | - |
| 0.3110 | 6980 | 0.3298 | - | - |
| 0.3115 | 6990 | 0.3061 | - | - |
| 0.3119 | 7000 | 0.3005 | 0.7686 | 0.7672 |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.1.0+cu118
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |