metadata
datasets:
- IlyaGusev/habr
- Den4ikAI/russian_instructions
- wiki_qa
inference:
parameters:
min_length: 20
max_new_tokens: 250
top_k: 50
top_p: 0.9
early_stopping: true
no_repeat_ngram_size: 2
use_cache: true
repetition_penalty: 1.5
length_penalty: 0.8
num_beams: 20
license: apache-2.0
language:
- ru
pipeline_tag: text-generation
widget:
- text: Почему трава зеленая?
example_title: Question Answering
- text: Как зарабатывать много денег обучая модели?
example_title: Open domain Knoweledge
- text: Напиши код который выведет Привет Мир
example_title: Scientific knowledge
library_name: transformers
tags:
- finance
- code
Instructions ruGPT Medium v0.11a
Model Summary
Я дообучил small rugpt на датасете инструкций, хабра, QA и кода
Quick Start
from transformers import pipeline
pipe = pipeline(model='AlexWortega/instruct_rugptMedium')
pipe('''Как собрать питон код?''')
or
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("AlexWortega/instruct_rugptMedium")
model = AutoModelForCausalLM.from_pretrained("AlexWortega/instruct_rugptMedium")
License
The weights of Instructions ruGPT Small v0.1a are licensed under version 2.0 of the Apache License.
Hyperparameters
I used Novograd with a learning rate of 2e-5 and global batch size of 6 (3 for each data parallel worker). I use both data parallelism and pipeline parallelism to conduct training. During training, we truncate the input sequence to 1024 tokens, and for input sequence that contains less than 1024 tokens, we concatenate multiple sequences into one long sequence to improve the data efficiency.
References
#Metrics
SOON
BibTeX entry and citation info
@article{
title={GPT2xl is underrated task solver},
author={Nickolich Aleksandr, 5Q, datascience, Ilya Gusev, Alex Kukushkin, Karina Romanova, Arseniy Shahmatov, Maksim Gersimenko},
year={2023}
}