File size: 41,390 Bytes
711d859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
# Originally made by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings)
# The original BigGAN+CLIP method was by https://twitter.com/advadnoun
import argparse
import math
import random
# from email.policy import default
from urllib.request import urlopen
from tqdm import tqdm
import sys
import os
# pip install taming-transformers doesn't work with Gumbel, but does not yet work with coco etc
# appending the path does work with Gumbel, but gives ModuleNotFoundError: No module named 'transformers' for coco etc
sys.path.append('taming-transformers')
from omegaconf import OmegaConf
from taming.models import cond_transformer, vqgan
#import taming.modules
import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from torch.cuda import get_device_properties
torch.backends.cudnn.benchmark = False # NR: True is a bit faster, but can lead to OOM. False is more deterministic.
#torch.use_deterministic_algorithms(True) # NR: grid_sampler_2d_backward_cuda does not have a deterministic implementation
from torch_optimizer import DiffGrad, AdamP
from CLIP import clip
import kornia.augmentation as K
import numpy as np
import imageio
from PIL import ImageFile, Image, PngImagePlugin, ImageChops
ImageFile.LOAD_TRUNCATED_IMAGES = True
from subprocess import Popen, PIPE
import re
# Supress warnings
import warnings
warnings.filterwarnings('ignore')
# Check for GPU and reduce the default image size if low VRAM
default_image_size = 512 # >8GB VRAM
if not torch.cuda.is_available():
default_image_size = 256 # no GPU found
elif get_device_properties(0).total_memory <= 2 ** 33: # 2 ** 33 = 8,589,934,592 bytes = 8 GB
default_image_size = 304 # <8GB VRAM
# Create the parser
vq_parser = argparse.ArgumentParser(description='Image generation using VQGAN+CLIP')
# Add the arguments
vq_parser.add_argument("-p", "--prompts", type=str, help="Text prompts", default=None, dest='prompts')
vq_parser.add_argument("-ip", "--image_prompts", type=str, help="Image prompts / target image", default=[], dest='image_prompts')
vq_parser.add_argument("-i", "--iterations", type=int, help="Number of iterations", default=500, dest='max_iterations')
vq_parser.add_argument("-se", "--save_every", type=int, help="Save image iterations", default=50, dest='display_freq')
vq_parser.add_argument("-s", "--size", nargs=2, type=int, help="Image size (width height) (default: %(default)s)", default=[default_image_size,default_image_size], dest='size')
vq_parser.add_argument("-ii", "--init_image", type=str, help="Initial image", default=None, dest='init_image')
vq_parser.add_argument("-in", "--init_noise", type=str, help="Initial noise image (pixels or gradient)", default=None, dest='init_noise')
vq_parser.add_argument("-iw", "--init_weight", type=float, help="Initial weight", default=0., dest='init_weight')
vq_parser.add_argument("-m", "--clip_model", type=str, help="CLIP model (e.g. ViT-B/32, ViT-B/16)", default='ViT-B/32', dest='clip_model')
vq_parser.add_argument("-conf", "--vqgan_config", type=str, help="VQGAN config", default=f'checkpoints/vqgan_imagenet_f16_16384.yaml', dest='vqgan_config')
vq_parser.add_argument("-ckpt", "--vqgan_checkpoint", type=str, help="VQGAN checkpoint", default=f'checkpoints/vqgan_imagenet_f16_16384.ckpt', dest='vqgan_checkpoint')
vq_parser.add_argument("-nps", "--noise_prompt_seeds", nargs="*", type=int, help="Noise prompt seeds", default=[], dest='noise_prompt_seeds')
vq_parser.add_argument("-npw", "--noise_prompt_weights", nargs="*", type=float, help="Noise prompt weights", default=[], dest='noise_prompt_weights')
vq_parser.add_argument("-lr", "--learning_rate", type=float, help="Learning rate", default=0.1, dest='step_size')
vq_parser.add_argument("-cutm", "--cut_method", type=str, help="Cut method", choices=['original','updated','nrupdated','updatedpooling','latest'], default='latest', dest='cut_method')
vq_parser.add_argument("-cuts", "--num_cuts", type=int, help="Number of cuts", default=32, dest='cutn')
vq_parser.add_argument("-cutp", "--cut_power", type=float, help="Cut power", default=1., dest='cut_pow')
vq_parser.add_argument("-sd", "--seed", type=int, help="Seed", default=None, dest='seed')
vq_parser.add_argument("-opt", "--optimiser", type=str, help="Optimiser", choices=['Adam','AdamW','Adagrad','Adamax','DiffGrad','AdamP','RAdam','RMSprop'], default='Adam', dest='optimiser')
vq_parser.add_argument("-o", "--output", type=str, help="Output image filename", default="output.png", dest='output')
vq_parser.add_argument("-vid", "--video", action='store_true', help="Create video frames?", dest='make_video')
vq_parser.add_argument("-zvid", "--zoom_video", action='store_true', help="Create zoom video?", dest='make_zoom_video')
vq_parser.add_argument("-zs", "--zoom_start", type=int, help="Zoom start iteration", default=0, dest='zoom_start')
vq_parser.add_argument("-zse", "--zoom_save_every", type=int, help="Save zoom image iterations", default=10, dest='zoom_frequency')
vq_parser.add_argument("-zsc", "--zoom_scale", type=float, help="Zoom scale %%", default=0.99, dest='zoom_scale')
vq_parser.add_argument("-zsx", "--zoom_shift_x", type=int, help="Zoom shift x (left/right) amount in pixels", default=0, dest='zoom_shift_x')
vq_parser.add_argument("-zsy", "--zoom_shift_y", type=int, help="Zoom shift y (up/down) amount in pixels", default=0, dest='zoom_shift_y')
vq_parser.add_argument("-cpe", "--change_prompt_every", type=int, help="Prompt change frequency", default=0, dest='prompt_frequency')
vq_parser.add_argument("-vl", "--video_length", type=float, help="Video length in seconds (not interpolated)", default=10, dest='video_length')
vq_parser.add_argument("-ofps", "--output_video_fps", type=float, help="Create an interpolated video (Nvidia GPU only) with this fps (min 10. best set to 30 or 60)", default=0, dest='output_video_fps')
vq_parser.add_argument("-ifps", "--input_video_fps", type=float, help="When creating an interpolated video, use this as the input fps to interpolate from (>0 & <ofps)", default=15, dest='input_video_fps')
vq_parser.add_argument("-d", "--deterministic", action='store_true', help="Enable cudnn.deterministic?", dest='cudnn_determinism')
vq_parser.add_argument("-aug", "--augments", nargs='+', action='append', type=str, choices=['Ji','Sh','Gn','Pe','Ro','Af','Et','Ts','Cr','Er','Re'], help="Enabled augments (latest vut method only)", default=[], dest='augments')
vq_parser.add_argument("-vsd", "--video_style_dir", type=str, help="Directory with video frames to style", default=None, dest='video_style_dir')
vq_parser.add_argument("-cd", "--cuda_device", type=str, help="Cuda device to use", default="cuda:0", dest='cuda_device')
# Execute the parse_args() method
args = vq_parser.parse_args()
if not args.prompts and not args.image_prompts:
args.prompts = "A cute, smiling, Nerdy Rodent"
if args.cudnn_determinism:
torch.backends.cudnn.deterministic = True
if not args.augments:
args.augments = [['Af', 'Pe', 'Ji', 'Er']]
# Split text prompts using the pipe character (weights are split later)
if args.prompts:
# For stories, there will be many phrases
story_phrases = [phrase.strip() for phrase in args.prompts.split("^")]
# Make a list of all phrases
all_phrases = []
for phrase in story_phrases:
all_phrases.append(phrase.split("|"))
# First phrase
args.prompts = all_phrases[0]
# Split target images using the pipe character (weights are split later)
if args.image_prompts:
args.image_prompts = args.image_prompts.split("|")
args.image_prompts = [image.strip() for image in args.image_prompts]
if args.make_video and args.make_zoom_video:
print("Warning: Make video and make zoom video are mutually exclusive.")
args.make_video = False
# Make video steps directory
if args.make_video or args.make_zoom_video:
if not os.path.exists('steps'):
os.mkdir('steps')
# Fallback to CPU if CUDA is not found and make sure GPU video rendering is also disabled
# NB. May not work for AMD cards?
if not args.cuda_device == 'cpu' and not torch.cuda.is_available():
args.cuda_device = 'cpu'
args.video_fps = 0
print("Warning: No GPU found! Using the CPU instead. The iterations will be slow.")
print("Perhaps CUDA/ROCm or the right pytorch version is not properly installed?")
# If a video_style_dir has been, then create a list of all the images
if args.video_style_dir:
print("Locating video frames...")
video_frame_list = []
for entry in os.scandir(args.video_style_dir):
if (entry.path.endswith(".jpg")
or entry.path.endswith(".png")) and entry.is_file():
video_frame_list.append(entry.path)
# Reset a few options - same filename, different directory
if not os.path.exists('steps'):
os.mkdir('steps')
args.init_image = video_frame_list[0]
filename = os.path.basename(args.init_image)
cwd = os.getcwd()
args.output = os.path.join(cwd, "steps", filename)
num_video_frames = len(video_frame_list) # for video styling
# Various functions and classes
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
# For zoom video
def zoom_at(img, x, y, zoom):
w, h = img.size
zoom2 = zoom * 2
img = img.crop((x - w / zoom2, y - h / zoom2,
x + w / zoom2, y + h / zoom2))
return img.resize((w, h), Image.LANCZOS)
# NR: Testing with different intital images
def random_noise_image(w,h):
random_image = Image.fromarray(np.random.randint(0,255,(w,h,3),dtype=np.dtype('uint8')))
return random_image
# create initial gradient image
def gradient_2d(start, stop, width, height, is_horizontal):
if is_horizontal:
return np.tile(np.linspace(start, stop, width), (height, 1))
else:
return np.tile(np.linspace(start, stop, height), (width, 1)).T
def gradient_3d(width, height, start_list, stop_list, is_horizontal_list):
result = np.zeros((height, width, len(start_list)), dtype=float)
for i, (start, stop, is_horizontal) in enumerate(zip(start_list, stop_list, is_horizontal_list)):
result[:, :, i] = gradient_2d(start, stop, width, height, is_horizontal)
return result
def random_gradient_image(w,h):
array = gradient_3d(w, h, (0, 0, np.random.randint(0,255)), (np.random.randint(1,255), np.random.randint(2,255), np.random.randint(3,128)), (True, False, False))
random_image = Image.fromarray(np.uint8(array))
return random_image
# Used in older MakeCutouts
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
class ClampWithGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
@staticmethod
def backward(ctx, grad_in):
input, = ctx.saved_tensors
return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
clamp_with_grad = ClampWithGrad.apply
def vector_quantize(x, codebook):
d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
return replace_grad(x_q, x)
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
#NR: Split prompts and weights
def split_prompt(prompt):
vals = prompt.rsplit(':', 2)
vals = vals + ['', '1', '-inf'][len(vals):]
return vals[0], float(vals[1]), float(vals[2])
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow # not used with pooling
# Pick your own augments & their order
augment_list = []
for item in args.augments[0]:
if item == 'Ji':
augment_list.append(K.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1, p=0.7))
elif item == 'Sh':
augment_list.append(K.RandomSharpness(sharpness=0.3, p=0.5))
elif item == 'Gn':
augment_list.append(K.RandomGaussianNoise(mean=0.0, std=1., p=0.5))
elif item == 'Pe':
augment_list.append(K.RandomPerspective(distortion_scale=0.7, p=0.7))
elif item == 'Ro':
augment_list.append(K.RandomRotation(degrees=15, p=0.7))
elif item == 'Af':
augment_list.append(K.RandomAffine(degrees=15, translate=0.1, shear=5, p=0.7, padding_mode='zeros', keepdim=True)) # border, reflection, zeros
elif item == 'Et':
augment_list.append(K.RandomElasticTransform(p=0.7))
elif item == 'Ts':
augment_list.append(K.RandomThinPlateSpline(scale=0.8, same_on_batch=True, p=0.7))
elif item == 'Cr':
augment_list.append(K.RandomCrop(size=(self.cut_size,self.cut_size), pad_if_needed=True, padding_mode='reflect', p=0.5))
elif item == 'Er':
augment_list.append(K.RandomErasing(scale=(.1, .4), ratio=(.3, 1/.3), same_on_batch=True, p=0.7))
elif item == 'Re':
augment_list.append(K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.1,1), ratio=(0.75,1.333), cropping_mode='resample', p=0.5))
self.augs = nn.Sequential(*augment_list)
self.noise_fac = 0.1
# self.noise_fac = False
# Uncomment if you like seeing the list ;)
# print(augment_list)
# Pooling
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
def forward(self, input):
cutouts = []
for _ in range(self.cutn):
# Use Pooling
cutout = (self.av_pool(input) + self.max_pool(input))/2
cutouts.append(cutout)
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
# An updated version with Kornia augments and pooling (where my version started):
class MakeCutoutsPoolingUpdate(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow # Not used with pooling
self.augs = nn.Sequential(
K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode='border'),
K.RandomPerspective(0.7,p=0.7),
K.ColorJitter(hue=0.1, saturation=0.1, p=0.7),
K.RandomErasing((.1, .4), (.3, 1/.3), same_on_batch=True, p=0.7),
)
self.noise_fac = 0.1
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
cutout = (self.av_pool(input) + self.max_pool(input))/2
cutouts.append(cutout)
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
# An Nerdy updated version with selectable Kornia augments, but no pooling:
class MakeCutoutsNRUpdate(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.noise_fac = 0.1
# Pick your own augments & their order
augment_list = []
for item in args.augments[0]:
if item == 'Ji':
augment_list.append(K.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1, p=0.7))
elif item == 'Sh':
augment_list.append(K.RandomSharpness(sharpness=0.3, p=0.5))
elif item == 'Gn':
augment_list.append(K.RandomGaussianNoise(mean=0.0, std=1., p=0.5))
elif item == 'Pe':
augment_list.append(K.RandomPerspective(distortion_scale=0.5, p=0.7))
elif item == 'Ro':
augment_list.append(K.RandomRotation(degrees=15, p=0.7))
elif item == 'Af':
augment_list.append(K.RandomAffine(degrees=30, translate=0.1, shear=5, p=0.7, padding_mode='zeros', keepdim=True)) # border, reflection, zeros
elif item == 'Et':
augment_list.append(K.RandomElasticTransform(p=0.7))
elif item == 'Ts':
augment_list.append(K.RandomThinPlateSpline(scale=0.8, same_on_batch=True, p=0.7))
elif item == 'Cr':
augment_list.append(K.RandomCrop(size=(self.cut_size,self.cut_size), pad_if_needed=True, padding_mode='reflect', p=0.5))
elif item == 'Er':
augment_list.append(K.RandomErasing(scale=(.1, .4), ratio=(.3, 1/.3), same_on_batch=True, p=0.7))
elif item == 'Re':
augment_list.append(K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.1,1), ratio=(0.75,1.333), cropping_mode='resample', p=0.5))
self.augs = nn.Sequential(*augment_list)
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
# An updated version with Kornia augments, but no pooling:
class MakeCutoutsUpdate(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
# K.RandomSolarize(0.01, 0.01, p=0.7),
K.RandomSharpness(0.3,p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
K.RandomPerspective(0.2,p=0.4),)
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
# This is the original version (No pooling)
class MakeCutoutsOrig(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
return clamp_with_grad(torch.cat(cutouts, dim=0), 0, 1)
def load_vqgan_model(config_path, checkpoint_path):
global gumbel
gumbel = False
config = OmegaConf.load(config_path)
if config.model.target == 'taming.models.vqgan.VQModel':
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == 'taming.models.vqgan.GumbelVQ':
model = vqgan.GumbelVQ(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
gumbel = True
elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
parent_model.eval().requires_grad_(False)
parent_model.init_from_ckpt(checkpoint_path)
model = parent_model.first_stage_model
else:
raise ValueError(f'unknown model type: {config.model.target}')
del model.loss
return model
def resize_image(image, out_size):
ratio = image.size[0] / image.size[1]
area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
size = round((area * ratio)**0.5), round((area / ratio)**0.5)
return image.resize(size, Image.LANCZOS)
# Do it
device = torch.device(args.cuda_device)
model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device)
jit = True if "1.7.1" in torch.__version__ else False
perceptor = clip.load(args.clip_model, jit=jit)[0].eval().requires_grad_(False).to(device)
# clock=deepcopy(perceptor.visual.positional_embedding.data)
# perceptor.visual.positional_embedding.data = clock/clock.max()
# perceptor.visual.positional_embedding.data=clamp_with_grad(clock,0,1)
cut_size = perceptor.visual.input_resolution
f = 2**(model.decoder.num_resolutions - 1)
# Cutout class options:
# 'latest','original','updated' or 'updatedpooling'
if args.cut_method == 'latest':
make_cutouts = MakeCutouts(cut_size, args.cutn, cut_pow=args.cut_pow)
elif args.cut_method == 'original':
make_cutouts = MakeCutoutsOrig(cut_size, args.cutn, cut_pow=args.cut_pow)
elif args.cut_method == 'updated':
make_cutouts = MakeCutoutsUpdate(cut_size, args.cutn, cut_pow=args.cut_pow)
elif args.cut_method == 'nrupdated':
make_cutouts = MakeCutoutsNRUpdate(cut_size, args.cutn, cut_pow=args.cut_pow)
else:
make_cutouts = MakeCutoutsPoolingUpdate(cut_size, args.cutn, cut_pow=args.cut_pow)
toksX, toksY = args.size[0] // f, args.size[1] // f
sideX, sideY = toksX * f, toksY * f
# Gumbel or not?
if gumbel:
e_dim = 256
n_toks = model.quantize.n_embed
z_min = model.quantize.embed.weight.min(dim=0).values[None, :, None, None]
z_max = model.quantize.embed.weight.max(dim=0).values[None, :, None, None]
else:
e_dim = model.quantize.e_dim
n_toks = model.quantize.n_e
z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
if args.init_image:
if 'http' in args.init_image:
img = Image.open(urlopen(args.init_image))
else:
img = Image.open(args.init_image)
pil_image = img.convert('RGB')
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
pil_tensor = TF.to_tensor(pil_image)
z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
elif args.init_noise == 'pixels':
img = random_noise_image(args.size[0], args.size[1])
pil_image = img.convert('RGB')
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
pil_tensor = TF.to_tensor(pil_image)
z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
elif args.init_noise == 'gradient':
img = random_gradient_image(args.size[0], args.size[1])
pil_image = img.convert('RGB')
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
pil_tensor = TF.to_tensor(pil_image)
z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
else:
one_hot = F.one_hot(torch.randint(n_toks, [toksY * toksX], device=device), n_toks).float()
# z = one_hot @ model.quantize.embedding.weight
if gumbel:
z = one_hot @ model.quantize.embed.weight
else:
z = one_hot @ model.quantize.embedding.weight
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
#z = torch.rand_like(z)*2 # NR: check
z_orig = z.clone()
z.requires_grad_(True)
pMs = []
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
# From imagenet - Which is better?
#normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225])
# CLIP tokenize/encode
if args.prompts:
for prompt in args.prompts:
txt, weight, stop = split_prompt(prompt)
embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for prompt in args.image_prompts:
path, weight, stop = split_prompt(prompt)
img = Image.open(path)
pil_image = img.convert('RGB')
img = resize_image(pil_image, (sideX, sideY))
batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
embed = perceptor.encode_image(normalize(batch)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights):
gen = torch.Generator().manual_seed(seed)
embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen)
pMs.append(Prompt(embed, weight).to(device))
# Set the optimiser
def get_opt(opt_name, opt_lr):
if opt_name == "Adam":
opt = optim.Adam([z], lr=opt_lr) # LR=0.1 (Default)
elif opt_name == "AdamW":
opt = optim.AdamW([z], lr=opt_lr)
elif opt_name == "Adagrad":
opt = optim.Adagrad([z], lr=opt_lr)
elif opt_name == "Adamax":
opt = optim.Adamax([z], lr=opt_lr)
elif opt_name == "DiffGrad":
opt = DiffGrad([z], lr=opt_lr, eps=1e-9, weight_decay=1e-9) # NR: Playing for reasons
elif opt_name == "AdamP":
opt = AdamP([z], lr=opt_lr)
elif opt_name == "RAdam":
opt = optim.RAdam([z], lr=opt_lr)
elif opt_name == "RMSprop":
opt = optim.RMSprop([z], lr=opt_lr)
else:
print("Unknown optimiser. Are choices broken?")
opt = optim.Adam([z], lr=opt_lr)
return opt
opt = get_opt(args.optimiser, args.step_size)
# Output for the user
print('Using device:', device)
print('Optimising using:', args.optimiser)
if args.prompts:
print('Using text prompts:', args.prompts)
if args.image_prompts:
print('Using image prompts:', args.image_prompts)
if args.init_image:
print('Using initial image:', args.init_image)
if args.noise_prompt_weights:
print('Noise prompt weights:', args.noise_prompt_weights)
if args.seed is None:
seed = torch.seed()
else:
seed = args.seed
torch.manual_seed(seed)
print('Using seed:', seed)
# Vector quantize
def synth(z):
if gumbel:
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embed.weight).movedim(3, 1)
else:
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(3, 1)
return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)
#@torch.no_grad()
@torch.inference_mode()
def checkin(i, losses):
losses_str = ', '.join(f'{loss.item():g}' for loss in losses)
tqdm.write(f'i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}')
out = synth(z)
info = PngImagePlugin.PngInfo()
info.add_text('comment', f'{args.prompts}')
TF.to_pil_image(out[0].cpu()).save(args.output, pnginfo=info)
def ascend_txt():
global i
out = synth(z)
iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
result = []
if args.init_weight:
# result.append(F.mse_loss(z, z_orig) * args.init_weight / 2)
result.append(F.mse_loss(z, torch.zeros_like(z_orig)) * ((1/torch.tensor(i*2 + 1))*args.init_weight) / 2)
for prompt in pMs:
result.append(prompt(iii))
if args.make_video:
img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:]
img = np.transpose(img, (1, 2, 0))
imageio.imwrite('./steps/' + str(i) + '.png', np.array(img))
return result # return loss
def train(i):
opt.zero_grad(set_to_none=True)
lossAll = ascend_txt()
if i % args.display_freq == 0:
checkin(i, lossAll)
loss = sum(lossAll)
loss.backward()
opt.step()
#with torch.no_grad():
with torch.inference_mode():
z.copy_(z.maximum(z_min).minimum(z_max))
i = 0 # Iteration counter
j = 0 # Zoom video frame counter
p = 1 # Phrase counter
smoother = 0 # Smoother counter
this_video_frame = 0 # for video styling
# Messing with learning rate / optimisers
#variable_lr = args.step_size
#optimiser_list = [['Adam',0.075],['AdamW',0.125],['Adagrad',0.2],['Adamax',0.125],['DiffGrad',0.075],['RAdam',0.125],['RMSprop',0.02]]
# Do it
try:
with tqdm() as pbar:
while True:
# Change generated image
if args.make_zoom_video:
if i % args.zoom_frequency == 0:
out = synth(z)
# Save image
img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:]
img = np.transpose(img, (1, 2, 0))
imageio.imwrite('./steps/' + str(j) + '.png', np.array(img))
# Time to start zooming?
if args.zoom_start <= i:
# Convert z back into a Pil image
#pil_image = TF.to_pil_image(out[0].cpu())
# Convert NP to Pil image
pil_image = Image.fromarray(np.array(img).astype('uint8'), 'RGB')
# Zoom
if args.zoom_scale != 1:
pil_image_zoom = zoom_at(pil_image, sideX/2, sideY/2, args.zoom_scale)
else:
pil_image_zoom = pil_image
# Shift - https://pillow.readthedocs.io/en/latest/reference/ImageChops.html
if args.zoom_shift_x or args.zoom_shift_y:
# This one wraps the image
pil_image_zoom = ImageChops.offset(pil_image_zoom, args.zoom_shift_x, args.zoom_shift_y)
# Convert image back to a tensor again
pil_tensor = TF.to_tensor(pil_image_zoom)
# Re-encode
z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
z_orig = z.clone()
z.requires_grad_(True)
# Re-create optimiser
opt = get_opt(args.optimiser, args.step_size)
# Next
j += 1
# Change text prompt
if args.prompt_frequency > 0:
if i % args.prompt_frequency == 0 and i > 0:
# In case there aren't enough phrases, just loop
if p >= len(all_phrases):
p = 0
pMs = []
args.prompts = all_phrases[p]
# Show user we're changing prompt
print(args.prompts)
for prompt in args.prompts:
txt, weight, stop = split_prompt(prompt)
embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
'''
# Smooth test
smoother = args.zoom_frequency * 15 # smoothing over x frames
variable_lr = args.step_size * 0.25
opt = get_opt(args.optimiser, variable_lr)
'''
p += 1
'''
if smoother > 0:
if smoother == 1:
opt = get_opt(args.optimiser, args.step_size)
smoother -= 1
'''
'''
# Messing with learning rate / optimisers
if i % 225 == 0 and i > 0:
variable_optimiser_item = random.choice(optimiser_list)
variable_optimiser = variable_optimiser_item[0]
variable_lr = variable_optimiser_item[1]
opt = get_opt(variable_optimiser, variable_lr)
print("New opt: %s, lr= %f" %(variable_optimiser,variable_lr))
'''
# Training time
train(i)
# Ready to stop yet?
if i == args.max_iterations:
if not args.video_style_dir:
# we're done
break
else:
if this_video_frame == (num_video_frames - 1):
# we're done
make_styled_video = True
break
else:
# Next video frame
this_video_frame += 1
# Reset the iteration count
i = -1
pbar.reset()
# Load the next frame, reset a few options - same filename, different directory
args.init_image = video_frame_list[this_video_frame]
print("Next frame: ", args.init_image)
if args.seed is None:
seed = torch.seed()
else:
seed = args.seed
torch.manual_seed(seed)
print("Seed: ", seed)
filename = os.path.basename(args.init_image)
args.output = os.path.join(cwd, "steps", filename)
# Load and resize image
img = Image.open(args.init_image)
pil_image = img.convert('RGB')
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
pil_tensor = TF.to_tensor(pil_image)
# Re-encode
z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
z_orig = z.clone()
z.requires_grad_(True)
# Re-create optimiser
opt = get_opt(args.optimiser, args.step_size)
i += 1
pbar.update()
except KeyboardInterrupt:
pass
# All done :)
# Video generation
if args.make_video or args.make_zoom_video:
init_frame = 1 # Initial video frame
if args.make_zoom_video:
last_frame = j
else:
last_frame = i # This will raise an error if that number of frames does not exist.
length = args.video_length # Desired time of the video in seconds
min_fps = 10
max_fps = 60
total_frames = last_frame-init_frame
frames = []
tqdm.write('Generating video...')
for i in range(init_frame,last_frame):
temp = Image.open("./steps/"+ str(i) +'.png')
keep = temp.copy()
frames.append(keep)
temp.close()
if args.output_video_fps > 9:
# Hardware encoding and video frame interpolation
print("Creating interpolated frames...")
ffmpeg_filter = f"minterpolate='mi_mode=mci:me=hexbs:me_mode=bidir:mc_mode=aobmc:vsbmc=1:mb_size=8:search_param=32:fps={args.output_video_fps}'"
output_file = re.compile('\.png$').sub('.mp4', args.output)
try:
p = Popen(['ffmpeg',
'-y',
'-f', 'image2pipe',
'-vcodec', 'png',
'-r', str(args.input_video_fps),
'-i',
'-',
'-b:v', '10M',
'-vcodec', 'h264_nvenc',
'-pix_fmt', 'yuv420p',
'-strict', '-2',
'-filter:v', f'{ffmpeg_filter}',
'-metadata', f'comment={args.prompts}',
output_file], stdin=PIPE)
except FileNotFoundError:
print("ffmpeg command failed - check your installation")
for im in tqdm(frames):
im.save(p.stdin, 'PNG')
p.stdin.close()
p.wait()
else:
# CPU
fps = np.clip(total_frames/length,min_fps,max_fps)
output_file = re.compile('\.png$').sub('.mp4', args.output)
try:
p = Popen(['ffmpeg',
'-y',
'-f', 'image2pipe',
'-vcodec', 'png',
'-r', str(fps),
'-i',
'-',
'-vcodec', 'libx264',
'-r', str(fps),
'-pix_fmt', 'yuv420p',
'-crf', '17',
'-preset', 'veryslow',
'-metadata', f'comment={args.prompts}',
output_file], stdin=PIPE)
except FileNotFoundError:
print("ffmpeg command failed - check your installation")
for im in tqdm(frames):
im.save(p.stdin, 'PNG')
p.stdin.close()
p.wait()
|