|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
import transformers |
|
from transformers import MllamaPreTrainedModel, MllamaVisionModel, MllamaForCausalLM, AutoModel |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.utils import logging |
|
from transformers.models.mllama.modeling_mllama import _prepare_cross_attention_mask |
|
from .configuration_llama3 import Llama3Config |
|
from .mllama_audio_model import MllamaAudioModel |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class Llama3PreTrainedModel(MllamaPreTrainedModel): |
|
config_class = Llama3Config |
|
base_model_prefix = "model" |
|
|
|
class Llama3ForConditionalGeneration(Llama3PreTrainedModel, GenerationMixin): |
|
_supports_quantized_cache = False |
|
|
|
def __init__(self, config: Llama3Config): |
|
super().__init__(config) |
|
self.vocab_size = config.text_config.vocab_size |
|
self.hidden_size = config.text_config.hidden_size |
|
self.max_num_tiles = config.vision_config.max_num_tiles |
|
self.vision_output_dim = config.vision_config.vision_output_dim |
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
|
|
self.vision_model = MllamaVisionModel._from_config(config.vision_config) |
|
self.language_model = MllamaForCausalLM._from_config(config.text_config) |
|
self.audio_model = MllamaAudioModel(config.audio_config, config.text_config) |
|
self.multi_modal_projector = nn.Linear( |
|
config.vision_config.vision_output_dim, |
|
config.text_config.hidden_size, |
|
bias=True, |
|
) |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
audio_features: Optional[torch.FloatTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
aspect_ratio_mask: Optional[torch.Tensor] = None, |
|
aspect_ratio_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_states: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
num_logits_to_keep: int = 0, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
num_logits_to_keep (`int`, *optional*): |
|
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all |
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
|
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, MllamaForConditionalGeneration |
|
|
|
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision" |
|
>>> model = MllamaForConditionalGeneration.from_pretrained(checkpoint) |
|
>>> processor = AutoProcessor.from_pretrained(checkpoint) |
|
|
|
>>> prompt = "<|image|>If I had to write a haiku for this one" |
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> output = model.generate(**inputs, max_new_tokens=15) |
|
|
|
>>> prompt_len = inputs.input_ids.shape[-1] |
|
>>> generated_ids = output[:, prompt_len:] |
|
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
>>> print(generated_text) |
|
[', it would be:.\\nA stop sign in Chinatown.\\n'] |
|
``` |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if pixel_values is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if pixel_values is not None and cross_attention_states is not None: |
|
raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously") |
|
|
|
if pixel_values is not None: |
|
if aspect_ratio_ids is None: |
|
raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided") |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
aspect_ratio_ids=aspect_ratio_ids, |
|
aspect_ratio_mask=aspect_ratio_mask, |
|
output_hidden_states=output_hidden_states, |
|
output_attentions=output_attentions, |
|
return_dict=return_dict, |
|
) |
|
cross_attention_states = vision_outputs[0] |
|
cross_attention_states = self.multi_modal_projector(cross_attention_states).reshape( |
|
-1, cross_attention_states.shape[-2], self.hidden_size |
|
) |
|
|
|
if cross_attention_mask is not None: |
|
cross_attention_mask, full_text_row_masked_out_mask = _prepare_cross_attention_mask( |
|
cross_attention_mask, |
|
num_vision_tokens=self.vision_model.num_patches, |
|
dtype=self.dtype, |
|
) |
|
else: |
|
full_text_row_masked_out_mask = None |
|
|
|
if cross_attention_mask is not None and cache_position is not None: |
|
cross_attention_mask = cross_attention_mask[:, :, cache_position] |
|
full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position] |
|
|
|
if audio_features is not None: |
|
if input_ids is None: |
|
raise ValueError("You must provide `input_ids` if you pass `audio_features`.") |
|
|
|
inputs_embeds = self.audio_model( |
|
audio_feature=audio_features, |
|
input_ids=input_ids, |
|
return_dict=False, |
|
) |
|
input_ids = None |
|
|
|
outputs = self.language_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
cross_attention_states=cross_attention_states, |
|
cross_attention_mask=cross_attention_mask, |
|
full_text_row_masked_out_mask=full_text_row_masked_out_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
output_hidden_states=output_hidden_states, |
|
output_attentions=output_attentions, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
num_logits_to_keep=num_logits_to_keep, |
|
) |
|
|
|
return outputs |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids=None, |
|
inputs_embeds=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
pixel_values=None, |
|
aspect_ratio_ids=None, |
|
aspect_ratio_mask=None, |
|
cross_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=False, |
|
cache_position=None, |
|
num_logits_to_keep=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if past_key_values is not None: |
|
if inputs_embeds is not None: |
|
input_ids = input_ids[:, -cache_position.shape[0] :] |
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
input_ids = input_ids[:, cache_position] |
|
|
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
position_ids = position_ids.clone(memory_format=torch.contiguous_format) |
|
|
|
|
|
if inputs_embeds is not None and cache_position[0] == 0: |
|
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} |
|
else: |
|
|
|
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} |
|
|
|
if num_logits_to_keep is not None: |
|
model_inputs["num_logits_to_keep"] = num_logits_to_keep |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"cache_position": cache_position, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
"cross_attention_mask": cross_attention_mask, |
|
} |
|
) |
|
|
|
|
|
|
|
if cache_position[0] == 0: |
|
model_inputs["pixel_values"] = pixel_values |
|
model_inputs["aspect_ratio_ids"] = aspect_ratio_ids |
|
model_inputs["aspect_ratio_mask"] = aspect_ratio_mask |
|
|
|
return model_inputs |
|
|
|
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs): |
|
cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None) |
|
model_kwargs = super()._update_model_kwargs_for_generation( |
|
outputs=outputs, |
|
model_kwargs=model_kwargs, |
|
is_encoder_decoder=is_encoder_decoder, |
|
**kwargs, |
|
) |
|
|
|
|
|
if cross_attention_mask_prev is not None: |
|
model_kwargs["cross_attention_mask"] = torch.cat( |
|
[cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1 |
|
) |
|
return model_kwargs |
|
|
|
AutoModel.register(Llama3Config, Llama3ForConditionalGeneration) |
|
transformers.Llama3ForConditionalGeneration = Llama3ForConditionalGeneration |