File size: 14,712 Bytes
c3c23c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d80cc31
 
c3c23c8
 
 
d80cc31
c3c23c8
 
 
 
 
 
 
 
d80cc31
c3c23c8
 
 
 
 
 
 
 
 
d80cc31
c3c23c8
 
d80cc31
c3c23c8
 
 
 
 
d80cc31
c3c23c8
 
 
 
 
 
 
d80cc31
c3c23c8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa20e130f80>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa20e156050>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa20e1560e0>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa20e156170>",
        "_build": "<function ActorCriticPolicy._build at 0x7fa20e156200>",
        "forward": "<function ActorCriticPolicy.forward at 0x7fa20e156290>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa20e156320>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7fa20e1563b0>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa20e156440>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa20e1564d0>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa20e156560>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7fa20e199c90>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 16,
    "num_timesteps": 557056,
    "_total_timesteps": 550000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1651842773.8264966,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOBnXr7LkYA/QagnvsS32b5kTH++085hOwAAAAAAAAAAZqorvI8aXLoGeaC7EGBYtikCJ7saHsU1AACAPwAAgD9jIb2+df+4va53ADrFhgI4ap+UPlEcLzkAAIA/AACAP5qlx7zhPIS67kpXu7849TPzJsS6VaLIswAAgD8AAIA/ZiKSPOHLTz+yMck7ftSjvluvKD3tIie9AAAAAAAAAAAz8TE9dWCqP+LD9D5w+8u+P6H8uyaqnD0AAAAAAAAAACZFoL0p5HS6FkakO+rzPTcCNgE7LnG9ugAAgD8AAIA/Mw1BvHv+obpyZyM6HAZFNnkTVbmjTzy5AACAPwAAgD8AcgA8j/53ujI2mbvXlI04twrNOUFOKToAAIA/AACAP82f07wUAKG6CkqqOlfAjDWrcrK6YiTEuQAAgD8AAIA/sw0/vcPxKLpbZsW7Xe5utuu20TqKf9w1AACAPwAAgD/NjR89w6lqutiTtTvkHro40fWpt4AlY7kAAIA/AACAP80CnL0Ewtc99NuJPgMdWb6zz7w9xsQAvQAAAAAAAAAAwFMqPky5Bz+7oxi9RVh9vpnqDzx29rS8AAAAAAAAAAAm9ty9e46Buo4zeDk+qWo04BKfOhPvkLgAAIA/AAAAAI0u0b1RCYA+KNtyPrCxYr4K2Mk8OhbiPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.012829090909090901,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqkiFsYX3ZECUhpRSlIwBbJRN6AOMAXSUR0CuNzaMzdk8dX2UKGgGaAloD0MIWI6QgbxQYUCUhpRSlGgVTegDaBZHQK44PX8O09h1fZQoaAZoCWgPQwj7ljldFl86QJSGlFKUaBVL8WgWR0CuORCswL3LdX2UKGgGaAloD0MIhNOCF32LZUCUhpRSlGgVTegDaBZHQK456DaoMrp1fZQoaAZoCWgPQwgDl8eaEaVjQJSGlFKUaBVN6ANoFkdArjsxsMy8BnV9lChoBmgJaA9DCMAlAP+Uf19AlIaUUpRoFU3oA2gWR0CuPAyrgflqdX2UKGgGaAloD0MIKXgKuVImVkCUhpRSlGgVTegDaBZHQK4+OaQ3gk11fZQoaAZoCWgPQwhupGyRtBsmwJSGlFKUaBVL82gWR0CuPkkTg2qDdX2UKGgGaAloD0MI1/oioS1iY0CUhpRSlGgVTegDaBZHQK4+wCI1tO51fZQoaAZoCWgPQwguVz82yXNiQJSGlFKUaBVN6ANoFkdArj+vJkoWpXV9lChoBmgJaA9DCFpG6j0Vc2BAlIaUUpRoFU3oA2gWR0CuVyV+y7f6dX2UKGgGaAloD0MIUtFY+7v+YkCUhpRSlGgVTegDaBZHQK5XsTN+so51fZQoaAZoCWgPQwhJgQUwZfRfQJSGlFKUaBVN6ANoFkdArlg+PeYUnHV9lChoBmgJaA9DCCkIHt/eTUdAlIaUUpRoFUvxaBZHQK5bwu2Zy+91fZQoaAZoCWgPQwiufmySHyFHQJSGlFKUaBVNFwFoFkdArlvKJ9AoonV9lChoBmgJaA9DCCxGXWtvN2JAlIaUUpRoFU3oA2gWR0CuXStxuKoAdX2UKGgGaAloD0MIwCUA/5RjZUCUhpRSlGgVTegDaBZHQK5dotHxz7x1fZQoaAZoCWgPQwilngWhvCNMQJSGlFKUaBVL9WgWR0CuXmTr3TNMdX2UKGgGaAloD0MIXHLcKR2gSECUhpRSlGgVTR4BaBZHQK5lN5u63Ap1fZQoaAZoCWgPQwi4IFuWryBfQJSGlFKUaBVN6ANoFkdArmZgCjk+5nV9lChoBmgJaA9DCErx8QlZjGFAlIaUUpRoFU3oA2gWR0CuaLTUiILxdX2UKGgGaAloD0MIKzV7oBUZY0CUhpRSlGgVTegDaBZHQK5qBomois51fZQoaAZoCWgPQwiU3GETmatcQJSGlFKUaBVN6ANoFkdArmrLgQ6IWXV9lChoBmgJaA9DCC+ISE071WVAlIaUUpRoFU3oA2gWR0Cua5XYcvM9dX2UKGgGaAloD0MIkbkyqLaIZECUhpRSlGgVTegDaBZHQK5sz/RVp9J1fZQoaAZoCWgPQwglzoqoCf5iQJSGlFKUaBVN6ANoFkdArm2pWFN+LHV9lChoBmgJaA9DCOyFAraDaVhAlIaUUpRoFU3oA2gWR0Cub9U/OdGzdX2UKGgGaAloD0MIADs3bUapZkCUhpRSlGgVTegDaBZHQK5v5LA57w91fZQoaAZoCWgPQwiD34YYr1psQJSGlFKUaBVN6gJoFkdArnEFXcQAdXV9lChoBmgJaA9DCLMHWoEhgGVAlIaUUpRoFU3oA2gWR0CuiLgctGutdX2UKGgGaAloD0MIIR/0bFZbZECUhpRSlGgVTegDaBZHQK6JV2K2rn11fZQoaAZoCWgPQwi6nui68FZeQJSGlFKUaBVN6ANoFkdAro5cS5AhS3V9lChoBmgJaA9DCJATJoxmSmZAlIaUUpRoFU3oA2gWR0CukMw9aEBbdX2UKGgGaAloD0MIH2Yv2065YECUhpRSlGgVTegDaBZHQK6R5DYywfR1fZQoaAZoCWgPQwjh0Fs8vBVdQJSGlFKUaBVN6ANoFkdArpqDUmUnonV9lChoBmgJaA9DCGA5QgZy22ZAlIaUUpRoFU3oA2gWR0Cum+0Moc7ydX2UKGgGaAloD0MI1bDfE+u3Y0CUhpRSlGgVTegDaBZHQK6evkuHvc91fZQoaAZoCWgPQwhbejTVk5ljQJSGlFKUaBVN6ANoFkdArqBRJwsGxHV9lChoBmgJaA9DCJsEb0ijkmBAlIaUUpRoFU3oA2gWR0CuoUI7vG6xdX2UKGgGaAloD0MIV68iowOPXECUhpRSlGgVTegDaBZHQK6iOAvtdAx1fZQoaAZoCWgPQwjSwmUVNkJlQJSGlFKUaBVN6ANoFkdArqOokLQXynV9lChoBmgJaA9DCKK3eHjP0GFAlIaUUpRoFU3oA2gWR0CupKH0se4kdX2UKGgGaAloD0MI3q8CfDcQYkCUhpRSlGgVTegDaBZHQK6nCjmjj711fZQoaAZoCWgPQwggYRiw5O9kQJSGlFKUaBVN6ANoFkdArqcbVSXMQnV9lChoBmgJaA9DCDrObcK96EZAlIaUUpRoFU0RAWgWR0Cup5/ATIvKdX2UKGgGaAloD0MIfT81XjolZECUhpRSlGgVTegDaBZHQK6oVpUPxx11fZQoaAZoCWgPQwj3BIntbudhQJSGlFKUaBVN6ANoFkdArqoHbZezEHV9lChoBmgJaA9DCLAbti1K6WRAlIaUUpRoFU3oA2gWR0CuwMYao/A1dX2UKGgGaAloD0MInrex2ZFKQECUhpRSlGgVS7RoFkdArsIBqXWvsHV9lChoBmgJaA9DCJaYZyWtlGZAlIaUUpRoFU3oA2gWR0CuxTXqAz55dX2UKGgGaAloD0MIzH9Iv31fVkCUhpRSlGgVTegDaBZHQK7HOoCMglp1fZQoaAZoCWgPQwgqyqXxCz5gQJSGlFKUaBVN6ANoFkdArsgXbh3qzXV9lChoBmgJaA9DCMRDGD+NqxPAlIaUUpRoFUvlaBZHQK7PWu27Wd51fZQoaAZoCWgPQwgXuDzWjK5CQJSGlFKUaBVNBgFoFkdArs9tYQrc03V9lChoBmgJaA9DCGkaFM0D1F1AlIaUUpRoFU3oA2gWR0Cuz57I91U3dX2UKGgGaAloD0MIHAx1WGHCYkCUhpRSlGgVTegDaBZHQK7Q02WpqAV1fZQoaAZoCWgPQwg6PITxU/FlQJSGlFKUaBVN6ANoFkdArtSH3SKFZnV9lChoBmgJaA9DCIqRJXOsoGNAlIaUUpRoFU3oA2gWR0Cu1WkzfrKOdX2UKGgGaAloD0MIMnctIR8kWkCUhpRSlGgVTegDaBZHQK7WRvXsgMd1fZQoaAZoCWgPQwhaEqCmlixmQJSGlFKUaBVN6ANoFkdArtemJDVpbnV9lChoBmgJaA9DCB2rlJ7pdWRAlIaUUpRoFU3oA2gWR0Cu2JhhQWN4dX2UKGgGaAloD0MIBADHnj10ZkCUhpRSlGgVTegDaBZHQK7a6ZFXq7l1fZQoaAZoCWgPQwgOhjqscOJmQJSGlFKUaBVN6ANoFkdArttrfWMCLnV9lChoBmgJaA9DCKt6+Z2mn2FAlIaUUpRoFU3oA2gWR0Cu3BlenhsJdX2UKGgGaAloD0MIlgfpKXITYECUhpRSlGgVTegDaBZHQK7dzJoTPB11fZQoaAZoCWgPQwi+2HvxRbhkQJSGlFKUaBVN6ANoFkdArt5u03Ov+3V9lChoBmgJaA9DCPz/OGFCBGFAlIaUUpRoFU3oA2gWR0Cu9f0F8ohIdX2UKGgGaAloD0MIk1URbrIMYUCUhpRSlGgVTegDaBZHQK75fze40/J1fZQoaAZoCWgPQwg3NGWnn6FiQJSGlFKUaBVN6ANoFkdArwXVZ9uxbHV9lChoBmgJaA9DCLecS3HV6GNAlIaUUpRoFU3oA2gWR0CvBev2PDHfdX2UKGgGaAloD0MIICi37XvSX0CUhpRSlGgVTegDaBZHQK8GI+M6zVt1fZQoaAZoCWgPQwgYXd4cLsRiQJSGlFKUaBVN6ANoFkdArwdx7w8W9HV9lChoBmgJaA9DCGxe1VktuWZAlIaUUpRoFU3oA2gWR0CvC3oiTt9hdX2UKGgGaAloD0MI+P9xwgSPZUCUhpRSlGgVTegDaBZHQK8MaHmig011fZQoaAZoCWgPQwgqO/2grgxgQJSGlFKUaBVN6ANoFkdArw1X3nIQv3V9lChoBmgJaA9DCIB+3795gWVAlIaUUpRoFU3oA2gWR0CvDsw4CIUKdX2UKGgGaAloD0MIc2cmGM5BZUCUhpRSlGgVTegDaBZHQK8PxyZrpJR1fZQoaAZoCWgPQwj7HvXXK81kQJSGlFKUaBVN6ANoFkdArxJHMQmNR3V9lChoBmgJaA9DCPjFpSrtdWRAlIaUUpRoFU3oA2gWR0CvEtR77bcodX2UKGgGaAloD0MIgT0mUprKYECUhpRSlGgVTegDaBZHQK8TjT4L1Ep1fZQoaAZoCWgPQwiwV1hwP7VeQJSGlFKUaBVN6ANoFkdArxVGrS3LFHV9lChoBmgJaA9DCB8sY0O3umNAlIaUUpRoFU3oA2gWR0CvFeH8KohqdX2UKGgGaAloD0MIH/KWqx+XYUCUhpRSlGgVTegDaBZHQK8tOdSVGCt1fZQoaAZoCWgPQwhcVIuIYmZhQJSGlFKUaBVN6ANoFkdArzB5vJiiI3V9lChoBmgJaA9DCAvQtpp1elxAlIaUUpRoFU3oA2gWR0CvO7qp1ie/dX2UKGgGaAloD0MIyZHOwEjbYECUhpRSlGgVTegDaBZHQK87zf2K2rp1fZQoaAZoCWgPQwh6xyk6kixkQJSGlFKUaBVN6ANoFkdArzwB6yB063V9lChoBmgJaA9DCAyVfy0vfWJAlIaUUpRoFU3oA2gWR0CvPTMoDxLCdX2UKGgGaAloD0MIak/JObEHYkCUhpRSlGgVTegDaBZHQK9AzbblA/t1fZQoaAZoCWgPQwgN4gM7/v9lQJSGlFKUaBVN6ANoFkdAr0GjVQQ+U3V9lChoBmgJaA9DCJQT7SqkYmJAlIaUUpRoFU3oA2gWR0CvQnNNahYedX2UKGgGaAloD0MIaeGyCptdQkCUhpRSlGgVTQIBaBZHQK9DsZTAFgV1fZQoaAZoCWgPQwiwy/Cf7h5iQJSGlFKUaBVN6ANoFkdAr0PI3DNyHXV9lChoBmgJaA9DCB7dCIuKt2NAlIaUUpRoFU3oA2gWR0CvRKUfxMFmdX2UKGgGaAloD0MIx6F+F7ZNY0CUhpRSlGgVTegDaBZHQK9G9Pnjhk11fZQoaAZoCWgPQwhKQbeXNGZjQJSGlFKUaBVN6ANoFkdAr0d2TibUgHV9lChoBmgJaA9DCFuYhXbOHGJAlIaUUpRoFU3oA2gWR0CvSCQrMC9zdX2UKGgGaAloD0MIYRbaOc02XECUhpRSlGgVTegDaBZHQK9J236yjYZ1fZQoaAZoCWgPQwj6Dn7iAFNlQJSGlFKUaBVN6ANoFkdAr0p+CXhOxnV9lChoBmgJaA9DCKGd0yzQ7mNAlIaUUpRoFU3oA2gWR0CvS8uE/SpjdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 340,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 10,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}