File size: 14,385 Bytes
c3c23c8
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa20e130f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa20e156050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa20e1560e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa20e156170>", "_build": "<function ActorCriticPolicy._build at 0x7fa20e156200>", "forward": "<function ActorCriticPolicy.forward at 0x7fa20e156290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa20e156320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa20e1563b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa20e156440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa20e1564d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa20e156560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa20e199c90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651840188.722942, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO6JL17RpO6VPe6uhWqVrafeQM6rqHBNQAAgD8AAIA/M27lvCmYJ7p1/e+5YIRYPCiVZzlFezG7AACAPwAAgD+msNG9XHtXusJdmDux1ZK5uEc5u+7il7oAAIA/AACAPyMekz5GCHo/2s8PPTaeab7UelE+oIUivgAAAAAAAAAA2Gejvqh1Dj/NGjY+rdA8vqDP6jzNQVC9AAAAAAAAAADNJZq8hRvDubiDZrlirCC0JQ78uhn4hDgAAIA/AACAP9Ay2b4zgX0/IOiUvYEzBr6AkrK9YAsOPAAAAAAAAAAAM7cTPbj267lAhDk8JLNuvLd+Qrt10lC9AAAAAAAAgD+AcsW99mR9uhcZLTuXPdO1BYPfOtUMvbQAAIA/AACAP2Y4yjyu74e6UnW2u9GBkjUBCAw7jYgGtQAAgD8AAIA/mpFPu8NhH7rjh0S4Qs05s7rluTq7smI3AACAPwAAgD+mhj6+BQD+u2LsEzzXM588vrVgPS6jhL0AAIA/AACAP2Zzo73D0QO6wT6uNe87Mi9gd5a7WHnjtAAAgD8AAIA/GsQfPdW2ND9/Bw++o8DXvS+OZ72clT29AAAAAAAAAADgoF6+wlU1P1x8HD67aiu+9Tm2PUSyBr0AAAAAAAAAAJpFDLyfM+a76jOSPCRlHT3V/zM9UqobvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoIhFDDvLXkCUhpRSlIwBbJRN6AOMAXSUR0CQJDiwB5oodX2UKGgGaAloD0MIbeUl/5MVYECUhpRSlGgVTegDaBZHQJAkjczqKP51fZQoaAZoCWgPQwh9XvHUI2BUQJSGlFKUaBVN6ANoFkdAkCVD238XN3V9lChoBmgJaA9DCIgtPZrqWmBAlIaUUpRoFU3oA2gWR0CQKIByCFsYdX2UKGgGaAloD0MIXjC45o6SX0CUhpRSlGgVTegDaBZHQJApQRL9MsZ1fZQoaAZoCWgPQwg0SwLU1JpdQJSGlFKUaBVN6ANoFkdAkCu6FZgXuXV9lChoBmgJaA9DCHrIlA9Bwl9AlIaUUpRoFU3oA2gWR0CQM8EmICU5dX2UKGgGaAloD0MIlPqytFOeV0CUhpRSlGgVTegDaBZHQJA2QJ4SpR51fZQoaAZoCWgPQwgwgPChRE84wJSGlFKUaBVNHwFoFkdAkDukQsf7rXV9lChoBmgJaA9DCPHVjuIcE1RAlIaUUpRoFU3oA2gWR0CQP5ZA6dUbdX2UKGgGaAloD0MI5gZDHVajV0CUhpRSlGgVTegDaBZHQJBPFFTefqZ1fZQoaAZoCWgPQwjWbrvQXKe5P5SGlFKUaBVNagFoFkdAkFFcuFpPAXV9lChoBmgJaA9DCEFK7Nrex1ZAlIaUUpRoFU3oA2gWR0CQUjhS9/SZdX2UKGgGaAloD0MIUpliDoJzWkCUhpRSlGgVTegDaBZHQJBTtZ1V5rx1fZQoaAZoCWgPQwggtvRoquVeQJSGlFKUaBVN6ANoFkdAkGhGMju8b3V9lChoBmgJaA9DCAvw3eaNc1dAlIaUUpRoFU3oA2gWR0CQa0M8ox5+dX2UKGgGaAloD0MI1Xd+UYJ4ZECUhpRSlGgVTegDaBZHQJBxjQrtmcx1fZQoaAZoCWgPQwibPGU1Xe9aQJSGlFKUaBVN6ANoFkdAkHkYCQtBfXV9lChoBmgJaA9DCFvOpbiqXVxAlIaUUpRoFU3oA2gWR0CQe6LmZE2HdX2UKGgGaAloD0MI3gTfNH0AYECUhpRSlGgVTegDaBZHQJB8Aq3Eycl1fZQoaAZoCWgPQwjVy+80GcdjQJSGlFKUaBVN6ANoFkdAkHy+3UhFE3V9lChoBmgJaA9DCK66DtWUEmBAlIaUUpRoFU3oA2gWR0CQgBuRs/IKdX2UKGgGaAloD0MIpOTVOQbiWkCUhpRSlGgVTegDaBZHQJCDm3z+WGB1fZQoaAZoCWgPQwi/CvDd5speQJSGlFKUaBVN6ANoFkdAkIxfiPyTZHV9lChoBmgJaA9DCM9oq5LIfgjAlIaUUpRoFU1WAWgWR0CQkKFcIJJHdX2UKGgGaAloD0MIAhB39SpDW0CUhpRSlGgVTegDaBZHQJCVFyZKFqV1fZQoaAZoCWgPQwiGAraDkd5gQJSGlFKUaBVN6ANoFkdAkJkn9R77bnV9lChoBmgJaA9DCGsr9pfdIFRAlIaUUpRoFU3oA2gWR0CQqLyz5XU6dX2UKGgGaAloD0MIuMmoMoxRXECUhpRSlGgVTegDaBZHQJCrCGXXyy51fZQoaAZoCWgPQwiTpkHRPB9aQJSGlFKUaBVN6ANoFkdAkKvqaXrt3XV9lChoBmgJaA9DCCYceosH0mBAlIaUUpRoFU3oA2gWR0CQrXe8wpOOdX2UKGgGaAloD0MIaTf6mA/IX0CUhpRSlGgVTegDaBZHQJDBnkYGdI51fZQoaAZoCWgPQwiygXSxaclaQJSGlFKUaBVN6ANoFkdAkMSmf9P1tnV9lChoBmgJaA9DCKBSJcrevl9AlIaUUpRoFU3oA2gWR0CQy4QAMlTndX2UKGgGaAloD0MId2ouNxjkXECUhpRSlGgVTegDaBZHQJDWsNgBtDV1fZQoaAZoCWgPQwhAMEeP3yVbQJSGlFKUaBVN6ANoFkdAkNcZHZsbenV9lChoBmgJaA9DCHh7EALylFZAlIaUUpRoFU3oA2gWR0CQ1+tjTa0ydX2UKGgGaAloD0MIlL2lnK+6YUCUhpRSlGgVTegDaBZHQJDb1SiudPN1fZQoaAZoCWgPQwj1DyIZclBeQJSGlFKUaBVN6ANoFkdAkN/rPyCnP3V9lChoBmgJaA9DCPooIy4AuFpAlIaUUpRoFU3oA2gWR0CQ6moCMglodX2UKGgGaAloD0MIMNl4sMX8XECUhpRSlGgVTegDaBZHQJDvRR0lqrR1fZQoaAZoCWgPQwg+syRATWdaQJSGlFKUaBVN6ANoFkdAkPQxcAzYVnV9lChoBmgJaA9DCFipoKLqflhAlIaUUpRoFU3oA2gWR0CQ+IbAUL2IdX2UKGgGaAloD0MIkBX8NsRXW0CUhpRSlGgVTegDaBZHQJEJ1cjZ+QV1fZQoaAZoCWgPQwiHNZVF4c1hQJSGlFKUaBVN6ANoFkdAkQxPNqxkd3V9lChoBmgJaA9DCOV8sffiy1JAlIaUUpRoFU3oA2gWR0CRDTumJm/WdX2UKGgGaAloD0MIk/3zNGC8XECUhpRSlGgVTegDaBZHQJEO6m1pj+d1fZQoaAZoCWgPQwhfB84ZUY9iQJSGlFKUaBVN6ANoFkdAkRGHcclw+HV9lChoBmgJaA9DCFJgAUwZAllAlIaUUpRoFU3oA2gWR0CRJiyGzru6dX2UKGgGaAloD0MIA5ZcxeI2YECUhpRSlGgVTegDaBZHQJEsxh+fAbh1fZQoaAZoCWgPQwjL1voiIcZgQJSGlFKUaBVN6ANoFkdAkTbjN6gM+nV9lChoBmgJaA9DCMbBpWPOvFtAlIaUUpRoFU3oA2gWR0CRN0CwbEP2dX2UKGgGaAloD0MIS1zHuOK/UkCUhpRSlGgVTegDaBZHQJE4ArH2h7F1fZQoaAZoCWgPQwgt0VlmEVtaQJSGlFKUaBVN6ANoFkdAkTs+B19v0nV9lChoBmgJaA9DCEAv3LmwSGFAlIaUUpRoFU3oA2gWR0CRPrd+5OJtdX2UKGgGaAloD0MIKv7viAr9WkCUhpRSlGgVTegDaBZHQJFG54W1twd1fZQoaAZoCWgPQwgAH7x2aSpeQJSGlFKUaBVN6ANoFkdAkUrXpnpSrHV9lChoBmgJaA9DCERssHCS7F1AlIaUUpRoFU3oA2gWR0CRTtexwAEMdX2UKGgGaAloD0MIrfvHQnRJZUCUhpRSlGgVTegDaBZHQJFSvqrzXjF1fZQoaAZoCWgPQwgZqmIqfUFhQJSGlFKUaBVN6ANoFkdAkWDGj4593XV9lChoBmgJaA9DCAnekEYFVF9AlIaUUpRoFU3oA2gWR0CRYt3pOerddX2UKGgGaAloD0MIsRTJVwKhXECUhpRSlGgVTegDaBZHQJFjr9n9Nvh1fZQoaAZoCWgPQwjVITfDDRJSQJSGlFKUaBVN6ANoFkdAkWUpgTh5xHV9lChoBmgJaA9DCE6dR8V/G2JAlIaUUpRoFU3oA2gWR0CRZ5E9t/FzdX2UKGgGaAloD0MIPNwODYvxYECUhpRSlGgVTegDaBZHQJF8Ms8PnSx1fZQoaAZoCWgPQwiy8WCL3cJfQJSGlFKUaBVN6ANoFkdAkYMFdcB2fXV9lChoBmgJaA9DCGh6ibFMxVlAlIaUUpRoFU3oA2gWR0CRji4EfT1DdX2UKGgGaAloD0MIS8lyEkqyW0CUhpRSlGgVTegDaBZHQJGOjyOJcgR1fZQoaAZoCWgPQwhuGAXB49FbQJSGlFKUaBVN6ANoFkdAkY9c0xdpqXV9lChoBmgJaA9DCMyZ7Qr9k2NAlIaUUpRoFU3oA2gWR0CRkwjtoi9qdX2UKGgGaAloD0MIEf5F0JgJ+b+UhpRSlGgVTUUBaBZHQJGUPzH0btJ1fZQoaAZoCWgPQwhRL/g0p8JgQJSGlFKUaBVN6ANoFkdAkZbTHKfWc3V9lChoBmgJaA9DCMEZ/P3inGVAlIaUUpRoFU3oA2gWR0CRn3P+4smOdX2UKGgGaAloD0MI8KfGSzcrW0CUhpRSlGgVTegDaBZHQJGjbC/Glyl1fZQoaAZoCWgPQwji5lQyAE5MwJSGlFKUaBVNZwFoFkdAkab4jGDL83V9lChoBmgJaA9DCET4F0FjyltAlIaUUpRoFU3oA2gWR0CRp4TgVGkOdX2UKGgGaAloD0MIe8A8ZMoTNMCUhpRSlGgVTX4BaBZHQJGo0U/OdG11fZQoaAZoCWgPQwhlxAWgUXBcQJSGlFKUaBVN6ANoFkdAkasIV2zOX3V9lChoBmgJaA9DCLluSnmtR1ZAlIaUUpRoFU3oA2gWR0CRt9vGZNO/dX2UKGgGaAloD0MIOpD11OqZQECUhpRSlGgVTRgBaBZHQJG5Jkc0cfh1fZQoaAZoCWgPQwi0WfW52jtfQJSGlFKUaBVN6ANoFkdAkbnNUfgaWHV9lChoBmgJaA9DCDwVcM/zM11AlIaUUpRoFU3oA2gWR0CRupMcIZ62dX2UKGgGaAloD0MICanb2dcwYECUhpRSlGgVTegDaBZHQJG75c5bQkZ1fZQoaAZoCWgPQwg+JefEHrFdQJSGlFKUaBVN6ANoFkdAkb4V0gbIcXV9lChoBmgJaA9DCHhflQuV92NAlIaUUpRoFU3oA2gWR0CR2O74i5d4dX2UKGgGaAloD0MIXqEPlrFUXkCUhpRSlGgVTegDaBZHQJHkTcEeQuF1fZQoaAZoCWgPQwhIG0esxSlDwJSGlFKUaBVNaAFoFkdAkeSLNW2gF3V9lChoBmgJaA9DCKhRSDKrhl5AlIaUUpRoFU3oA2gWR0CR6Bs4T9KmdX2UKGgGaAloD0MInMO12sMrVUCUhpRSlGgVTegDaBZHQJHpXKyOaOR1fZQoaAZoCWgPQwjxSScSzAlkQJSGlFKUaBVN6ANoFkdAkevyPQv6CXV9lChoBmgJaA9DCDCDMSJRZF9AlIaUUpRoFU3oA2gWR0CR9MLZzxPPdX2UKGgGaAloD0MINeuM7wsWYUCUhpRSlGgVTegDaBZHQJH4txhlUZN1fZQoaAZoCWgPQwhtGttrQVBSQJSGlFKUaBVN6ANoFkdAkfzr2lEZznV9lChoBmgJaA9DCNDsurci81dAlIaUUpRoFU3oA2gWR0CR/lg0CRwIdX2UKGgGaAloD0MI6E1FKoxsYUCUhpRSlGgVTegDaBZHQJIAsL+glGB1fZQoaAZoCWgPQwjhfVUuVN1lQJSGlFKUaBVN6ANoFkdAkg5oBRyfc3V9lChoBmgJaA9DCM0+j1GecVhAlIaUUpRoFU3oA2gWR0CSD8gwXZXddX2UKGgGaAloD0MIO3MPCd9BWUCUhpRSlGgVTegDaBZHQJIQbUgB91F1fZQoaAZoCWgPQwjXT/9Z8+RYQJSGlFKUaBVN6ANoFkdAkhKPlEJBxHV9lChoBmgJaA9DCN3qOen9JmJAlIaUUpRoFU3oA2gWR0CSFOb9ZRsNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}