AlekseyKorshuk's picture
End of training
1332d51 verified
|
raw
history blame
3.58 kB
metadata
license: mit
base_model: microsoft/phi-2
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: evol-codealpaca-pairwise-sharegpt-test
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: microsoft/phi-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

hub_model_id: AlekseyKorshuk/evol-codealpaca-pairwise-sharegpt-test

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: AlekseyKorshuk/evol-codealpaca-pairwise-sharegpt
    type: sharegpt
    conversation: chatml

dataset_prepared_path:
val_set_size: 0.001
output_dir: ./phi-sft-out

sequence_len: 2048
sample_packing: false  # currently unsupported
pad_to_sequence_len:

lora_r:
lora_alpha:
lora_dropout:
lora_target_modules:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: ui-thesis
wandb_entity:
wandb_watch:
wandb_name: phi-2-chatml-test
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 3
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 0.00001
#max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 1e-5
warmup_ratio: 0.03
weight_decay: 0.01

train_on_inputs: false
group_by_length: false
bf16: false
fp16: false
tf32: false
float16: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true


evals_per_epoch: 1
eval_table_size: 8 # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
eval_table_max_new_tokens: 512 # Total number of tokens generated for predictions sent to wandb. Default is 128

saves_per_epoch: 1
save_total_limit: 1
debug:
deepspeed:

fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true

special_tokens:
  eos_token: "<|im_end|>"
  pad_token: "<|endoftext|>"
tokens:
  - "<|im_start|>"

evol-codealpaca-pairwise-sharegpt-test

This model is a fine-tuned version of microsoft/phi-2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0374

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.0571 0.01 1 1.2056
0.8271 1.0 82 1.0443
0.7871 2.0 164 1.0378
0.8198 3.0 246 1.0374

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0